若a大于0 b大于0 且1 A=1 B=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:03:44
∵负十七分之十五=-1+2/17负十九分之十七=-1+2/192/17>2/19∴负十七分之十五>负十九分之十七
∵a,b为正数∴a+b≥2√ab∵ab=a+b+3∴ab≥2√ab+3解关于√ab的不等式得√ab≥3∴ab≥9同样用均值不等式可得ab≤(a+b)^2/4a+b+3≤(a+b)^2/4解关于(a+b
作出f(x)=log2(X+1)的图像f(a)/a=(f(a)-f(0))/(a-0)表示点(a,f(a))与(0,0)连线的斜率同理:f(b)/b表示点(b,f(b))与(0,0)连线的斜率f(c)
∵1/a+2/b=1,又a>0、b>0,∴1/a+2/b≧2√[(1/a)(2/b)],∴1≧2√[2/(ab)],∴√(ab)≧2√2,∴ab≧8.∴ab的最小值是8.
答:(1)a>0,b>0-a再答:那就对了,呵呵
a>0、b>0,且a^2+b^2/2=1.依二元基本不等式得:a√(1+b^2)=(√2/2)·2√[a^2·(1/2+b^2/2)]≤(√2/2)·(a^2+b^2/2+1/2)=(3√2)/4.∴
公式:a>0,b>0,则a+b≥2根号(ab)a分之b+b分之a≥2根号(a分之b乘以b分之a)根号(a分之b乘以b分之a)=1a分之b+b分之a≥22+a分之b+b分之a≥4再问:公式:a>0,b>
a-b>0a的绝对值大,而且是正数,无论b为何值a-b一定大于0
(a+1/a)^2+(b+1/b)^2=a^2+1/a^2+2+b^2+1/b^2+2=(a^2+b^2)+(1/a^2+1/b^2)+4>=1/2*(a+b)^2+1/2*(1/a+1/b)^2+4
因为a大于b,b小于0,所以分类讨论a的正负情况当a>0>b时,1/a>1/b当0>a>b时,1/a
ab大于等于a+b+1即ab≥a+b+1即a+b+1≤ab≤【(a+b)/2】²即a+b+1≤【(a+b)/2】²令t=a+b,则t>0则t+1≤【t/2】²=1/4*t
√a+√b=√1998√a=√1998-√ba=1998+b-2√(1998b)已知a,b为正整数,所以1998b是个完全平方数为1998=2*3*3*3*37配方b=2*3*37=222,a=888
证: 1>a>0,1>b>0 (1+1/a)(1+1/b)-9=1+1/(ab)+1
这个题目可以直接把“均值不等式”当作已知的基本定理而直接证明.我这里给出更基本一些的方法,即假设我们干脆没听说过均值不等式.首先给出一个因式分解公式:(符号^表示乘方)x^3+y^3+z^3-3xyz
∵b/a+a/b≥2(√b/a×√a/b)=2×1=2c/a+a/c≥2(√c/a×√a/c)=2×1=2c/b+b/c≥2(√c/b×√b/c)=2×1=2∴1/a+1/b+1/c=(a+b+c)/
(1)-b<a<-a<b(2)|2(1-a)|-|b-2|-2|b-a|=2(1-a)-(2-b)-2(b-a)=2-2a-2+b-2b+2a=-b(3)由条件有两个零点值:x=a,x=b,设a<b,
因为a大于1,b大于0,所以a^b>1.a^b+a^-b=2√2a^b+1/a^b=2√2(a^b)^2+1=2√2*a^b(a^b)^2-2√2*a^b+1=0(这是一个一元二次方程)解这个方程后得
-(a+b)-(a-b)-(-a-b)=-a-b-a+b+a+b=b-a当a=-4,b=1时,原式=1+4=5