若B的每一列都是方程组AX=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:49:45
若B的每一列都是方程组AX=0
小婷知道方程组x=1 y=-1和方程组x=2 y=2都是二元一次方程ax+by+4=0的解

分别把x=1y=-1和x=2y=2代人二元一次方程ax+by+4=0中得a-b+4=02a+2b+4=0解得:a=-3b=1所以二元一次方程ax+by+4=0为-3x+y+4=0当x=3y=4时-3x

已知A是3阶矩阵,其秩为2,若A重每行元素之和都是零,求其次方程组Ax=0的通解

因为R(A)=2所以AX=0的基础解系含3-2=1个向量因为A的每行元素之和都是零所以A(1,1,...,1)^T=0即(1,1,...,1)^T是AX=0的解所以AX=0的通解为c(1,1,.,1)

刘老师,已知A=(a1,a2,a3,a4)是4阶矩阵,a1,a2,a3,a4是4维列向量,若方程组Ax=b的通解是(1,

特解(1,2,2,1)^T代入AX=b得到a1+2a2+2a3+a4=b(1)通解(1,-2,4,0)^T代入AX=0得到a1-2a2+4a3=0(2)Ax=b的基础解系是1维的,所以A的秩是3,(a

矩阵方程的问题将A-E以列分块后,为什么每一列就是方程组AX=0的解向量?A-E中至少有一列不等于零,故至少有一个非零解

因为A(A-E)=0将它展开后就可以看出A-E每一列就是方程组AX=0的解向量.A-E不等于0,则至少有一列不为0,而它为AX=0的解,则存在非零解

A,B都是n阶非零矩阵,AB=0,则A,B的秩都小于n,即B的每一列都是方程组Ax=0的解,为什么r(A)>=1,r(B

(A)>=1是因为它是非零矩阵,只要是非零矩阵,秩当然至少是1至于r(B)

设A是m*n矩阵,B是n*s矩阵,x是列向量,证明:AB=O的充分必要条件是B的每一列都是齐次线性方程组AX=O的解

设B=[b1,b2,……,bs]那么AB=OA[b1,b2,……,bs]=[O,O,……,O]Abi=0,(i=1……s)即bi(i=1,2,...,s)是AX=O的解

设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~

|A|=0证明:设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0仅有零解.但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0有非零解,则r

设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0是解,则|A|=?

|A|=0因为B非零,B的列向量都是AX=0的解,所以AX=0有非零解.所以|A|=0.

设A,B都是n阶矩阵,B不等于0向量,且B的每一列都是方程组AX=0的解,则detA=?

这样想,矩阵B的每一列都是AX=0的解,这就说明AX=0有很多个解,也就是说这个方程的系数矩阵A肯定是不可逆的,当然它的行列式等于0再问:怎么说的不可逆再答:方程AX=0有多个非零解,系数矩阵A肯定不

.若关于xy的方程组ax+by=1 x^2+y^2=10有解,且所有的解都是整数,则有序实数对(a,b)的个数为

x^2+y^2=10的整数解一共有8组(1,3)(-1,3)(-1,-3),(1,-3)(3,1)(3,-1)(-3,-1),(-3,1)过任意一点的切线都满足:8条过任意两点的直线都满足:方程组{a

线性代数求教,p=0,q=2(1)求齐次方程组Ax=0的基础解系(2)求方程组Ax=b的通解

增广矩阵B=(A,b)=[111111][3211-30][012263][5433-12]初等行变换为[111111][0-1-2-2-6-3][012263][0-1-2-2-6-3]初等行变换为

设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|等于?

B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解说明齐次线性方程组Ax=0有非零解,故其系数行列式|A|=0.(n元齐次线性方程组当方程的个数等于未知数的个数时,方程组有非零解的充要

设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=_________.

|A|=0B的每一个列向量都是齐次线性方程组Ax=0的解所以Ax=0有非零解,所以系数矩阵行列式为0

已知三阶矩阵B不等于0,且B的每个列向量都是方程的解 ,方程组x1+2*x2-2*x3=0 ,2*

因为,三阶矩阵B不等于0而,方程组x1+2*x2-2*x3=0,2*x1-x2+a*x3=0,3*x1+x2-x3=0,是齐次方程组,要非零解的条件必须它们系数组成的三阶行列式=0即:12-2[2-1

线性代数矩阵问题设A是m*n的矩阵,B是n*s矩阵,x是n*1矩阵,证明AB=0的充分必要条件是B的每一列都是齐次线性方

把B写出分块矩阵的形式,B=(b1,b2,..bs),其中bi是B的第i个列向量,(i=1,2..s)AB=0A(b1,b2,..bs)=(Ab1,Ab2,..Abs)=0=(0,0,...0)Abi

A是m*n矩阵,B是n*s矩阵,X是n*1矩阵,证明AB=O的充要条件是B的每一列都是齐次方程组AX=O的解

设B=[b1,b2,……,bs]那么AB=OA[b1,b2,……,bs]=[O,O,……,O]Abi=0,(i=1……s)即bi(i=1,2,...,s)是AX=O的解或者是设B=(B1,B2,.,B

解下列关于x的方程:①ax+b=bx+a;(a.b≠0)

ax+b=bx+a(a-b)x=a-b当a不等于b时,两边同除以(a-b)得x=1当a等于b时,0*x=0,对于任何的x都恒成立注意分类讨论就是了

非齐次线性方程组Ax=b中,m*n矩阵A的n个列向量线性无关,则方程组有唯一解.

对的根据你的题目,方程组有n个未知量,而方程组的秩也为n所以方程组有唯一解

AB=O,为什么可以说明B的列向量是方程组Ax=0的解?请举个例子.

矩阵乘法,按照概念写出来你就明白了.类似ax+by+cz=0...的一个方程组.其中a,b,c是A的行向量.x,y,x为B的列向量.对于方程组.x,y,x是求解的未知数,很好理解的.