若c分之a b=a分之b c=b分之c a=k则一次函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:19:32
a+b/ab+b+c/bc+c+a/ac=1/b+1/a+1/c+1/b+1/a+1/c=2(1/a+1/b+1/c)∵1/a+1/b+1/c=-2∴所求=2×(-2)=-4再问:看补充的问题!再答:
a/|a|+|b|/b+|c|/c=1|a|>0,|b|>0,|c|>0a,b,c一定有两个正数,一个负数.设a,b正,则c负:(|abc|/abc)^1999÷(bc/|ab|xac/|bc|xab
1/a+1/b=1/6,1/b+1/c=1/9,1/c+1/a=1/15,三式相加,得,2(1/a+1/b+1/c)=1/6+1/9+1/15,所以1/a+1/b+1/c=31/180,所以ab+bc
设A/2=B/3=C/4=R则A=2RB=3RC=4RA²/(AB+BC+AC)=4R²/(6R²+12R²+8R²)=2/13B²/(AB
ab/(a+b)=1/3取倒数(a+b)/ab=3a/ab+b/ab=31/b+1/a=3同理1/b+1/b=41/a+1/c=5相加2(1/a+1/b+1/c)=121/a+1/b+1/c=6通分(
由已知得:(a+b)/ab=2→1/a+1/b=2……①(b+c)/bc=3→1/b+1/c=3……②(a+c)/ac=4→1/a+1/c=4……③三式相加除以2得1/a+1/b+1/c=9/2,……
把第一个等式两边都乘以c,第二个等式两边都乘以a,第三个等式两边都乘以b,再把三个等式左右两边分别相加,左边就是你要求的分式的2倍,右边相加等于47/60,两边同时除以2就得47/120
因为abc=1所以1/(ab+a+1)=c/(abc+ac+c)=c/(ac+c+1)1/(bc+b+1)=ac/(abc^2+abc+ac)=ac/(ac+c+1)因此原式=c/(ac+c+1)+a
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)=a/(ab+a+abc)+b/(bc+b+1)+bc/(abc+bc+b)=1/(b+1+bc)+b/(bc+b+1)+bc/(1+b
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)=ac/(abc+ac+c)+b/(bc+b+abc)+c/(ac+c+1)=ac/(1+ac+c)+1/(c+1+ac)+c/(ac+
ab/(a+b)=1/3取倒数(a+b)/ab=3a/ab+b/ab=31/b+1/a=3同理1/b+1/b=41/a+1/c=5相加2(1/a+1/b+1/c)=121/a+1/b+1/c=6通分(
(a+b)/ab=6a+b=6ab(a+b)c=6abc①(b+c)/bc=8b+c=8bc(b+c)*a=8abc②(a+c)/ac=10a+c=10ac(a+c)*b=10abc③①+②+③,得2
(a+b)/ab=15同乘c=(ac+bc)/abc=15(1)(b+c)/bc=17同乘a=(ab+ac)/abc=17(2)(a+c)/ac=16同乘b=(ab+cb)/abc=16(3)(1)+
=[(a-b)c-(a-c)b+(b-c)a]/abc=(ac-bc-ab+bc+ab-ac)/abc=0
a+b分之ab=3分之1,ab分之a+b=3,分子分母都乘以c,b+c分之bc=4分之1,bc分之b+c=4,分子分母都乘以a,a+c分之ac=5分之1,ac分之a+c=5,分子分母都乘以b,然后,上
a+b分之ab=3分之1知道1/a+1/b=3b+c分之bc=4分之1知道1/b+1/c=4a+c分之ac=5分之1知道1/a+1/c=51/a+1/b+1/c=(3+4+5)/2=6知道(ab+ac
设a/3=b/4=c/6=ka=3kb=4kc=6kA^2+B^2+C^2分之AB+BC+AC=(12k^2+24k^2+18k^2)/(9k^2+16k^2+36k^2)=54k^2/61k^2=5
最后一项写错了,应该是(ca+c+1)分之c.a/(ab+a+1)+b/(bc+b+1)+c/(ca+c+1)=a/(ab+a+abc)+b/(bc+b+1)+c/(ca+c+abc)=1/(b+1+
abc=1所以b=1/acab=1/cbc=1/a所以原式=a/(1/c+a+1)+(1/ac)/(1/a+1/ac+1)+c/(ac+c+1)第一个式子上下同乘c第二个式子上下同乘ac所以=ac/(