若e^-x是f(x)的原函数,则∫x^2f(lnx)dx=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:45:25
dF(x^1/2)/dx=dF(x^1/2)/d(x^1/2)*d(x^1/2)/dx=e^x/(2√x)再问:。。。表达清楚啊再答:难道没有写清楚吗?
∫xf(x^2)dx=1/2∫f(x^2)d(x^2)=1/2*e^(-x^2)+c
∫f(x)dx=(1/x)e^xf(x)=(xe^x-e^x)/x²=(1/x²)(x-1)e^x∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=(1/x)(x-1
∫e^-xf(e^-x)dx=-∫f(e^-x)d(e^-x)=-F(e^-x)+C
e^(-x)是f(x)的一个原函数则[e^(-x)]'=f(x)=-e^(-x)所以∫xf(x)dx=∫-xe^(-x)dx是用分部积分=∫xe^(-x)d(-x)=∫xde^(-x)=xe^(-x)
f(x)=[e^(-x^2)]'=-2x*e^(-x^2)∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=xf(x)-e^(-x^2)(分部积分法)=2x^2*e^(-x^2)-e^(
1,xe^x是f(x)的一个原函数,即:∫f(x)dx=xe^x+C,所以∫f(3x)dx=1/3*∫f(3x)d(3x)=1/3*3xe^(3x)+C=xe^(3x)+C2,e^(-x^2)是f(x
F'(x)=e^(-x^2)dF(√x)=F'(√x)*d(√x)=F'(√x)*(1/2√x)dx=e^(-x)*(1/2√x)dx与你的答案差一个负号
∫xf"(x)dx=∫xdf'(x)dx=xf'(x)-∫f'(x)dx=xf'(x)-f(x)+Ce^x是函数f(x),f(x)=(e^x)'=e^x,f'(x)=e^x所以∫xf"(x)dx=xe
∫f(x)dx=e^(-x^2)+C两边关于x求导,f(x)=-2xe^(-x^2)I=∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=-2x^2e(-x^2)-e^(-x^2)+C应
∫e^xf'(x)dx(分部积分法)=e^x*f(x)-∫e^x*f(x)dx=e^x*f(x)-∫(e^x*e^(-x)*cosx+C*e^x)dx(代入f(x)=e^-xcosx+C)=e^x*f
f(x)=-e^(-x)x^2f(lnx)dx==x^2*(-1/x)dx=-xdx=-1/2*x^2+c设t=lnx,x=e^tx^2f(lnx)dx=(e^t)^2*f(t)d(e^t)=e^2t
令t=e^(﹣x),则:lnt=﹣x得:dt/t=﹣dx∫e^(-x)f'(e^-x)dx=∫t·f'(t)·[﹣(dt/t)]=﹣∫f'(t)dt=﹣f(t)+C
xe^x-e^x
是积分吧e^x为f(x)的一个原函数f(x)=(e^x)'=e^x∫xf(x)dx=∫xe^xdx=∫xde^x=xe^x-∫e^xdx=xe^x-e^x+C
由题意,f"(x)=f'(x)+2f(x)+e^x特征方程为t²=t+2(t-2)(t+1)=0得t=2,-1即齐次方程的解为y1=C1e^(2x)+C2e^(-x)设特解为y*=ae^x则
=ex-1/2x^2
f(x)=[e^(-x^2)]'=-2xe^(-x^2)∫xf’(x)dx=∫xdf(x)=xf(x)-∫f(x)dx(分部积分法)=-2x^2e^(-x^2)-e^(-x^2)
这里只要凑微分就可以了,不用分部积分的∫e^(-x)f[e^(-x)]dx=∫-f[e^(-x)]de^(-x)而F(x)是f(x)的原函数,所以再积分一次,得到∫e^(-x)f[e^(-x)]dx=
f(x)=[e^(-2x)]'=e^(-2x)*(-2x)'=-2e^(-2x)