若f(x)在x0的去心邻域内可导,在x0处连续
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:48:07
f'(x)=f'(x0)+f''(x0)(x-x0)+f'''(x0)(x-x0)^2/2+o(x-x0)^2=f'(x0)+f'''(x0)(x-x0)^2/2+o(x-x0)^2取x→x0,则f'
这个问题课本上肯定会有,可能出现在定理、性质、例题或习题. 定理若 lim(x→x0)f(x)=A>0,则存在δ>0,使得x∈O*(x0,δ)(去心邻域),有 f(x)>A/2>0.
结论错误.如f(x)=x,x0=0,此时a=0.若改成a>=0结论就对了.再问:怎么证明了?我想了好久也不会证明。请给些帮助再答:结论错误你还证明什么?已经给你反例了。再问:证明你说的A大于等于0的结
f(x)=x^2g(x)=x^4在x=0的邻域内f(x)>g(x)f(x)与g(x)在x=0的极限存在,均等于0.
不能.比如黎曼函数,狄利克雷函数等
当然要保证函数的连续性在保证连续的情况下,在x0的去心领域中都有f'(x)>0,所以f(x)单调上升函数在x0处可导,不是在去心领域中可导,若要函数在去心领域中都可导,则要保证a足够小
有定义就是指这个函数有具体的表达式,也可以是抽象的形式,也可以是具体的形式,总是有定义就是你要规定这个函数到底是什么样的函数.当然它必须满足函数的定义.
极限的局部保号性.用极限定义:取ε=1,必存在x0的某邻域,当x在该邻域内(x不等于x0),恒有:3-ε0
应该不是等价的,x0的空心邻域内f(x)可导,但在x=x0处是否可导不确定,改成在x0的某邻域内f(x)可导就对了.再问:��Ϊʲô��ش���2��Ҫ�涨f(x)�ɵ�����x����x0�Ŀ�
取极值的充分条件就是,f(x)在x0的某邻域上一阶可导,在x0处二阶可导,且f'(x0)=0,f"(x0)≠0因此这里一阶导数不为0,而且此邻域有二阶导数,所以x0一定不是极值点而拐点则是,某点使函数
极限为正,则f(x)-f(x0)>0,f(x)>f(x0),x=x0为极小点
若limf'(x0)=A,则lim[x→x0][f(x)-f(x0)]/(x-x0)=A因此lim[x→x0+][f(x)-f(x0)]/(x-x0)=Alim[x→x0-][f(x)-f(x0)]/
解题思路:这个极限定义一时难以理解,很正常,因为这个定义的数学语言太严谨了,我们平时的日常用语达不到这个境界,只能在今后的进一步的数学学习去加深理解。大学读个差不多的时候也可能是达到能够意会难难以言传
证明:f(x)→A,(x→x0),表明对任意ε1>0,存在去心领域x∈Nº(x0,δ1),使得:|f(x)-A|A-ε1令ε1=(A-B)/2,则f(x)>(A+B)/2··········
设f(xo)=a≠0.∵函数f(x)在点x0连续,∴对于ε=|a|/2>0存在δ>0当x∈﹙x0-δ,x0+δ﹚=U(x0)时|f(x)-f(xo)|<ε.即x∈U(x0)-|a|/2<f(x)-a<
若limf'(x0)=A,则lim[x→x0][f(x)-f(x0)]/(x-x0)=A因此lim[x→x0+][f(x)-f(x0)]/(x-x0)=Alim[x→x0-][f(x)-f(x0)]/
http://baike.baidu.com/link?url=aaw6msJKZ4dkGw072b4vWespkfzWCtHstS1TNQZvqCAbe4GdkpJ90F2fCR_ZcMtNQzy3