若f(x)在[a,b]连续,恒正,按定义证明1 f(x)在[a,b]连续

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:01:47
若f(x)在[a,b]连续,恒正,按定义证明1 f(x)在[a,b]连续
若f(x)在[a,b]上连续,a

f(x)在[a,b]上连续,则在[x1,xn]上连续,则在[x1,xn]上必能取得最大和最小值,M和m设f(c)=M,f(d)=m其中c,d在x1,和x2之间(有可能在端点)如果M=m,说明f(x)是

若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.

(1)令g(x)=f(x)-x在区间(a,b)内连续g(a)=b-a>0g(b)=a-

f(x)在[a,b]上可导,f(x)的导数是否在[a,b]上连续

看分段函数f(x)=x^2sin(1/x),x不等于0时;f(x)=0,x等于0时.它的导数为2xsin(1/x)-cos(2/x)-,x不等于0时;当x等于0时,它的导数为0.该函数f(x)在整个实

设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)

F'(x)=【f(x)(x-a)-∫(a,x)f(t)dt】/(x-a)^2=【f(x)(x-a)-f(t0)(x-a)】/(x-a)^2=【f(x)-f(t0)】/(x-a)

设函数f(x)在(a,b)内连续,则必有().

CA.比如f(x)=tan(x)在(-pi/2,pi/2)内连续,但是f(x)无界B.同上,f(x)=tan(x)无最大值,也无最小值D.如果是分段函数,该条不成立,比如函数f(x)=100,x=1;

函数连续性问题若f(x)在[a,b]上连续,是否f(x)cosx也在[a,b]上连续?以及为什么?

证明:对于任一点x0∈[a,b]因为f(x)连续,所以lim(x->x0-)f(x)=lim(x->x0+)f(x)=f(x0)因为cosx是连续的.所以lim(x->x0-)cosx=lim(x->

若f(x)在[a,b]上连续,在(a,b)内可导,|f'(x)|小于等于M,f(a)=0,求证:f(x)dx在[a,b]

打了一大堆,却输入字数限制,没辙了.只能说下大概过程:将b转为以x,建立辅助函数:F(x)=∫f(t)dt-M/2*(x-a)²(上限是x,下限是a)F(a)=0,连续两次求导利用已知条件判

证明 若f(x)在有限区间内一致连续,则可补充f(a)和f(b),使得f(x)在[a,b]上连续

利用函数的柯西定理可以证明f(x)在x=a及x=b处分别存在右极限f(a+)和左极限f(b-),令f(a)=f(a+),f(b)=f(b-)便有f(x)在[a,b]上连续

若f(x)在[a,b)上连续,且lim f(x) (x->b-) 存在,证明f(x)在[a,b)上有界.

因为lim(x->b-)f(x)存在,不妨设为B,对于是ε=1,由函数极限的定义可知,必存在一个正数δ(最好取的小一点,小于b-a),当b-δ

设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]0,f(a)f[(a

因为f(a)、f(b)同号,f(a)与f[(a+b)/2]异号则根据连续函数介值定理在(a,(a+b)/2)中至少存在一点M,在((a+b)/2,b)中至少存在一点N,使得f(M)=f(N)=0根据罗

证明若f(x)在[a,b]上连续,且对任何x∈[a,b],f(x)≠0则f(x)在[a,b]上恒正或恒负

中值定理这个问题简单地用一个连续函数,即对于F(A)和f之间的任何C(B),有ξ∈[A,B],使得f(ξ)=C在这里,因为0再问:中值定理我不懂,能不能用另外的方法证明,谢谢!

高数介值定理.若f(x)在[a,b]上连续,a求证明。

因为f(x)在[a,b]上连续,所以在[a,b]上存在最大值M,最小值N;即对于一切x∈[a,b],有N

f(x)在[a,b]上连续,(a,b)上可导,且f′(x)>0,若x趋向于a+,limf(2x-a)/(x-a)存在,证

由于x趋于a+时,分母x-a是趋于0的,所以如果极限limf(2x-a)/(x-a)存在,分子f(2x-a)也必须趋于0,这样的0/0型未定式极限才可能存在.故x趋于a+时有limf(2x-a)=0,

若f(x),g(x)在[a,b] 上连续,证明max( f(x) ,g(x ))在[a,b]上连续

max(a,b)=(a+b)/2+|a--b|/2;因此max{fg}=(f+g)/2+|f--g|/2连续.

若f(x)在[a,b]上连续,且对任何[a,b]上连续函数g(x),恒有∫(a到b)f(x)g(x)=0,求证f(x)恒

取g(x)=f(x)即可(如果是复函数则取共轭),这样|f(x)|^2的积分为零,由连续性知f(x)=0

f(x)在(a,b)\{c}连续.\表示什么?

\是集合相减的符号,表示前面的集合去掉后面的集合,a

设f(x)在【a,b】上连续,在(a,b)内f''(x)>0,证明:

求出F’(x),只要F’(x)>0,则得到F(x)在(a,b】上是单调增加的求得F’(x)=[f’(x)*(x-a)-f(x)+f(a)]/(x-a)^2,则F’(x)的符号由分子决定令分子是G(x)

设f(x)在[a,b]上连续,a

证明:令k=[pf(c)+qf(d)]/(p+q)无妨设f(c)≤f(d),由于q是正数,所以qf(c)≤qf(d)pf(c)+qf(c)≤pf(c)+qf(d)(p+q)f(c)≤pf(c)+qf(

f(x)在[a,b]上连续a

因为f(x)在[a,b]上连续m>0,n>0所以设G为f(x)在[a,b]上的最大值g为f(x)在[a,b]上的最小值则mg≤mf(c)≤mGng≤nf(d)≤nG(m+n)g≤mf(c)+nf(d)