若f(x)连续,f(x t)dt在0到x上对x求导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:39:50
由题设,知f(0)=0,g(0)=0,令u=xt,得g(x)=∫(0,x)f(u)du/x,(x≠0),从而g'(x)=[xf(x)-∫(0,x)f(u)du]/x^2,(x≠0),由导数定义有,g'
两边求两次导,然后就象解决微分方程一样解决它
f(x)=xsinx-x∫[0→x]f(t)dt+∫[0→x]tf(t)dtf(0)=0f'(x)=sinx+xcosx-∫[0→x]f(t)dt-xf(x)+xf(x)=sinx+xcosx-∫[0
d/dx∫[0,x](x-t)f'(t)dt=d/dx{x∫[0,x]f'(t)dt-∫[0,x]tf'(t)dt}=∫[0,x]f'(t)dt+xd/dx∫[0,x]f'(t)dt-d/dx∫[0,
f(x)=e^x+sinx-∫[0→x](x-t)f(t)dt=e^x+sinx-x∫[0→x]f(t)dt+∫[0→x]tf(t)dt求导得:f'(x)=e^x+cosx-∫[0→x]f(t)dt-
f(x)=cosx-x*sinx先令xt=s把s和x分离求导得到f'(x)=-2sinx-xcosx积分得到f(x)
∫(0->1)xf(t)dt=f(x)+xe^xf(x)=-xe^x+∫(0->1)xf(t)dt(1)∫(0->1)f(x)dx=∫(0->1)[-xe^x+∫(0->1)xf(t)dt]dx=∫(
f(x)=∫[a→x]f(t)dt两边求导得:f'(x)=f(x),将x=a代入上式,得初始条件:f(a)=0设f(x)=y,则f'(x)=f(x)得:dy/dx=y,分离变量得:dy/y=dx两边积
令xt=u,则t=u/x,dt=(1/x)du,t:0-->1时,u:0-->x则原式化为:∫(0,x)f(u)/xdu=f(x)+xe^x即:1/x∫(0,x)f(u)du=f(x)+xe^x得:∫
lim{x->0}(1/x)∫[0,1]f(xt)dt=∫[0,1]t*lim{xt->0}{f(xt)-f(0)}/(xt)dt=∫[0,1]t*f'(0)dt,注意:lim{xt->0}{f(xt
这个题目吧,很把f(t-x)中的x分离出来令t-x=ydt=dyt=0,y=-xt=x,y=0g(x)=∫[-x,0](x+y)^2f(y)dy=x^2∫[-x,0]f(y)dy+2x∫[-x,0]y
∵f(x)=e^x+∫(t-x)f(t)dt∴f'(x)=e^x-∫f(t)dtf''(x)=e^x-f(x)f(0)=f'(0)=1故解此微分方程得f(x)=C1e^x+C2e^(-x)+(x/2)
这道题关键的地方是做变量代换:令s=tx,注意对s来说,x是常数,t是自变量.这道题主要考察“变上限积分函数”的微分.
u=t+a,du=dtu积分下限为0+a=a,上限为x+a∫(0,x)f(t+a)dt=∫(a,x+a)f(u)du=F(u)|(a,x+a)=F(x+a)-F(a)
192^(1/3)再问:......过程,谢谢......而且答案貌似是36^(1/3)再答:对于积分,t^2dt积分后为(t^3)/3,上限为f(x),下线为0.代入积分表达式得(f(x))^3除以
F(-x)=∫[0,-x]f(t)dt=∫[0,x]f(-u)d(-u)(令t=-u)=∫[0,x]-f(u)(-du)=∫[0,x]f(u)du=F(x),所以F(x)是偶函数.选B.