若f是满射,gf是单射,则g是单射.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:38:21
在AB上取中点H,连接DH,因为DE平行且等于,HB,所以四边形DHBE为平行四边形,即DE平行HB,根据你给的结论,在三角形FDC中,因为E为DC中点,且中线EG平行于第二条边FD,即可得出EG平分
证明∵BG∥AC,∴∠DBG=∠DCF.又∵BD=CD,∠BDG=∠CDF,∴△BGD≌△CFD(ASA).∴BG=CF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(
△CFD≌△BGDCF=BG,DG=DF△EGD≌△EDFEF=EG△EBG中,BE+BG>EGBE+CF>EG
连接EG因为BG与AC平行,D为BC中点所以三角形BGD与三角形CDF全等则CF等于BG,GD等于DF又因为ED垂直于GF即三角形EFG的边GF的中线与高线重合所以三角形EFG为等腰三角形所以EF等于
连接DE、DF.在Rt△BCE中,DE是斜边BC上的中线,可得:DE=(1/2)BC;在Rt△BCF中,DF是斜边BC上的中线,可得:DF=(1/2)BC;所以,DE=DF;在等腰△DEF中,DG是底
证明:连接GD,GE因为角AEB=角ADB=90度则GD=1/2AB,GE=1/2AB所以GE=GD因为F是ED的中点所以GF⊥ED
证明:GF⊥DE.理由如下:如图,连接EG、DG,∵BD、CE分别是△ABC的AC、BC边上的高,点G是BC的中点,∴DG=EG=12BC,∵点F是DE的中点,∴GF⊥DE.
证明:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∠DBG=∠DCFBD=CD∠BDG=∠CDF∴△BGD≌△CFD(AS
猜想:EF=AC.理由如下:因为D,E分别是BC,AB的中点,所以,DE平行AC,且DE=AC/2;又因为FG平行AD,所以四边形ADFG是平行四边形,所以,DF=AG;因为G是AC中点,所以,DF=
∵ABCD是平行四边形∴AB‖CD∴△CDF∽△EBF∴CF∶FE=DF∶BF∵BC‖AD∴△BCF∽△DGF∴GF∶FC=DF∶BF∴CF∶FE=GF∶FC∴FC^2=EF*GF=8*2=16∴CF
直角三角形斜边上的中线等于斜边的一半,GE=GD=BC/2.等腰三角形底边上的中线垂直底边,GF⊥ED.
1)∵AC‖BG∴∠DCF=∠DBG∵D为BC中点∴CD=BD在△DCF和△DBG中〔∠DCF=∠DBG〔CD=BD〔∠CDF=∠BDG∴△DCF≌△DBG∴CF=BG,DF=DG(2)结合(1)又∵
(1)在△CDF和△BDG中∵角GDB=角FDCBD=CD角GBD=角FCD∴△CDF≌△BDG∴BG=CF(2)连接EG∵△CDF≌△BDG∴GD=FD又∵ED⊥GF∴ED垂直平分GF∴EF=EG又
1.EF//AC且EF=AC2.AD是三角形ABC的中线即D是BC中点ED为中位线,ED//AC即EF//AC由题设,AD//GF又DF//AG四边形ADFG为平行四边形,DF=AGED为中位线,ED
相等因为AD是三角形ABC的中线所以D为BC的中点又E为AB的中点所以ED平行AC且ED=AC/2=AG因为AC平行EF、AD平行GF所以ADFG为平行四边形所以AG=DF=ED又G为AC中点所以AC
(1)证明:连接GB,设∠AGD=∠1,连接GB,易证△GAB≌△GAD,∴∠AGB=∠AGD=∠1,∴∠FGB=90°-2∠1,∠GBF=∠BGC+∠GCB=∠1+45°,在△FGB中,有∠F=18
垂直.因为ED分别为AC.BC中点.所以ED是中位线,所以DE平行AB.因为G,F分别为AB,ED中点,连接GF,所以GF垂直AB,因为AB平行DE,所以GF垂直ED
连接GD,GE,因为G点是AB的中点,BE,AD分别是AC,BC上的高,由"直角三角形斜边上的中线等于斜边的一半",知GD,GE都等于的一半,所以,再根据等腰三角形的三线合一性知GF垂直于DE
引连接线EF、FD,在直角三角形△BCE、△BCD中,可证中线EF=1/2BC=FD,则在等腰三角形△EFD中,可证中线GF垂直于底边ED还是差不多10年前学的平面几何,忘得差不多了.
反证若f不是单射,则存在a不等于b,且都属于A满足f(a)=f(b)因为gf是A到A的恒等映射,则有a=gf(a)=gf(b)=b==>a=b矛盾故f是单射若g不是满射,则存在a∈A,满足对任何b∈B