若n阶矩阵A有特征值2,则|A 2E|=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:49:04
若n阶矩阵A有特征值2,则|A 2E|=
设A为n阶可逆矩阵,已知A有一个特征值为2,则(2A)的逆必有一个特征值为?

∵A的特征值为a∴Ax=ax两遍同乘以A^(-1)得:x=aA^(-1)x∴A^(-1)x=(1/a)x,∴A的逆矩阵的1/a又∵A的特征值为2,则2A的特征值为2*2=4,∴(2A)的逆矩阵的一个特

已知n价可逆矩阵A的特征值为λ,则矩阵(2A)^(-1)的特征值为?

1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.

如图,对角矩阵A的特征值有几个,是否所有n阶矩阵都有n个特征值

对角矩阵的特征值就是对角线元素,所有n阶矩阵都有n个特征值,只不过会有一部分特征值是零

A为n阶矩阵,若已知A^2=0矩阵,能否推出A的特征值全部为0?

肯定是设x为A的属于特征值i的特征向量,那么Ax=ix从而AAx=Aix也就是A^2x=i(Ax)=i^2x从而i^2x=0,也就是i^2=0从而i=0由于i是A的任意一个特征值,所以A的全部特征值全

设为n阶方阵,为的伴随矩阵,若有特征值为λ,则A-1的特征值之一为

x为特征值Aa=xaA*Aa=xA*a|A|a=xA*aA*a=(|A|/x)a即A*的特征值与A特征值的关系为λ(A*)=|A|/λAa=xaAAa=xAaA^2a=x(xa)=x^2aA^2的特征

线性代数矩阵秩A为3阶矩阵的特征值为0,0,2,就我所知,若0为矩阵的特征值,则|A|=0,即它的秩小于3,若n阶矩阵不

1对.矩阵经初等行变换秩不变.这是性质,初等变换只是个工具,还不让用辅助定理了?他可以初等变换成k阶单位阵加0元素.秩明显为k

设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值______

假设λ是A的任意一个特征值,其对应的特征向量为x,则由|A|≠0知λ≠0,且Ax=λx (x≠0),得:A−1x=1λx,于是,|A|A−1x=|A|λx,而:|A|A-1=A*,则:A*x

设λ是n阶矩阵A的一个特征值,求证:若A可逆,则1/λ是n阶矩阵A-1;的一个特征值

λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

线性代数:n阶矩阵A与它的转置矩阵A'有相同的特征值

因为特征值是特征方程|λI-A|=0的根,所以要证明特征值相同只要特征方程相同即可令矩阵B=λI-A,根据行列式知识detB=detB'即|λI-A|=|(λI-A)'|=|λI-A'|,因此A和A'

若3是n*n阶矩阵A的特征值,行列式|A|=2,则A的伴随矩阵的一个特征值为几?为什么?

一个特征值是2/3,分析如图.经济数学团队帮你解答,请及时采纳.

线代矩阵特征值相关有3阶矩阵特征值1,1,2,则行列式|A^-1+2A*|=?

因为3阶矩阵A的特征值1,1,2所以|A|=1*1*2=2因为AA^*=A^*A=|A|E=2E所以A(A^-1+2A^*)=E+2|A|E=(2|A|+1)E=5E故|A(A^-1+2A^*)|=|

n阶可逆矩阵A的一个特征值是5,则矩阵[(1/2)A2]-1次方 必有一个特征值是什么

可根据特征值的性质如图得到一个特征值是2/25.经济数学团队帮你解答,请及时采纳.

A是n阶矩阵,行列式|A|=2,若矩阵A +E不可逆,则矩阵A的伴随矩阵A*必有特征值?

因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值

.若矩阵A有特征值5.则2A的平方必有一个特征值是多少?

他的特征值是50这个题有个公式就是,A^2的特征值是5的平方.在乘以2就是50

设λ是n阶矩阵A的特征值 则 是A平方的特征值

则λ^2是A平方的特征值证明:设x是A的属于特征值λ的特征向量即有Ax=λx,x≠0等式两边左乘A,得A^2x=λAx=λ^2x所以λ^2是A^2的特征值.