若n阶矩阵A有特征值2,则|A 2E|=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:49:04
∵A的特征值为a∴Ax=ax两遍同乘以A^(-1)得:x=aA^(-1)x∴A^(-1)x=(1/a)x,∴A的逆矩阵的1/a又∵A的特征值为2,则2A的特征值为2*2=4,∴(2A)的逆矩阵的一个特
1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.
对角矩阵的特征值就是对角线元素,所有n阶矩阵都有n个特征值,只不过会有一部分特征值是零
肯定是设x为A的属于特征值i的特征向量,那么Ax=ix从而AAx=Aix也就是A^2x=i(Ax)=i^2x从而i^2x=0,也就是i^2=0从而i=0由于i是A的任意一个特征值,所以A的全部特征值全
x为特征值Aa=xaA*Aa=xA*a|A|a=xA*aA*a=(|A|/x)a即A*的特征值与A特征值的关系为λ(A*)=|A|/λAa=xaAAa=xAaA^2a=x(xa)=x^2aA^2的特征
应该是问A的秩吧,是1
A是数量阵,可用相似于对角阵说明.
1对.矩阵经初等行变换秩不变.这是性质,初等变换只是个工具,还不让用辅助定理了?他可以初等变换成k阶单位阵加0元素.秩明显为k
A=diag【x,x,.,x】
假设λ是A的任意一个特征值,其对应的特征向量为x,则由|A|≠0知λ≠0,且Ax=λx (x≠0),得:A−1x=1λx,于是,|A|A−1x=|A|λx,而:|A|A-1=A*,则:A*x
1是定义,肯定是充要,2是充分不必要条件
λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
因为特征值是特征方程|λI-A|=0的根,所以要证明特征值相同只要特征方程相同即可令矩阵B=λI-A,根据行列式知识detB=detB'即|λI-A|=|(λI-A)'|=|λI-A'|,因此A和A'
一个特征值是2/3,分析如图.经济数学团队帮你解答,请及时采纳.
因为3阶矩阵A的特征值1,1,2所以|A|=1*1*2=2因为AA^*=A^*A=|A|E=2E所以A(A^-1+2A^*)=E+2|A|E=(2|A|+1)E=5E故|A(A^-1+2A^*)|=|
可根据特征值的性质如图得到一个特征值是2/25.经济数学团队帮你解答,请及时采纳.
因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值
他的特征值是50这个题有个公式就是,A^2的特征值是5的平方.在乘以2就是50
则λ^2是A平方的特征值证明:设x是A的属于特征值λ的特征向量即有Ax=λx,x≠0等式两边左乘A,得A^2x=λAx=λ^2x所以λ^2是A^2的特征值.