若n阶矩阵A满足A²-2A-4I=0,试证A I可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:09:27
知识点:1.AB=0,则r(A)+r(B)
因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n
:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5-
A^2=A得到A(A-E)=0由r(A)+r(B)-n
A+2A-3E=0,3A=3E,A=E.
对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3
因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A
A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.
A^2-2A-4I=0有A^2-2A-3I=I,即(A+I)*(A-3I)=I所以(A+I)可逆,且(A+I)^-1=(A-3I)
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).
A^2-2A-3I=0即A(A-2I)=3I即A*(A-2I)/3=I,所以选D再问:第一步提了个A出来威慑么2后面会有个I?再答:因为这是矩阵相乘2A=2A*I,任何矩阵与单位矩阵的乘积不变.再问:
刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.
A²-2A-4I=0所以A(A-2I)=4I所以A[(1/4)(A-2I)]=I所以A^(-1)=(1/4)(A-2I)
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
题目告诉你(A+I)(A-3I)=I即A+I可逆且其逆为A-3I
A*2-4A+3E=0(A-E)(A-3E)=0A=E或A=3EA=3E时A-3E是0阵,不可逆.舍去、A=E时,A-3E=-2,0,00,-2,00,0,-2其逆敌阵:-1/2,0,00,-1/2,
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
因为A^2+4A+4E=0所以(A+2E)^2=0所以A的特征值只能是-2.又由于A是实对称矩阵(可对角化)所以存在可逆矩阵P满足P^-1AP=diag(-2,-2,...,-2)=-2E所以A=P(
这样处理:设λ是A的特征值则λ^2-λ是A^2-A的特征值由A^2-A=0,零矩阵的特征值只能是0所以λ^2-λ=0即λ(λ-1)=0所以A的特征值为0或1.