若x,y,z均为正实数,则xy zy x^2 y^2 z^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:47:02
∵xy=1,∴x4y4=1,∴y4=1x4,∴z=1x4+14y4,=1x4+14x4,=(1x2-12x2)2+2•1x2•12x2,=(1x2-12x2)2+1,∵当(1x2-12x2)2=0,上
条件不足!再问:没有啊,试卷上就是这么写的,有4个选项:A、√2/2B、√2c、2√2D、2√3再答:好的。(xy+yz)/(x^2+y^2+z^2)=(xy+yz)/(x^2+1/2y^21/2y^
xy-6=2x+y≥2√(2xy)令a=√xy则a²-2√2a-6≥0所以a≤-√2,a≥3√2因为√xy>0所以√xy≥3√2xy≥12所以最小值是12
x+y+z=xyzxy+z=xyzxy(z-1)=zxy=z/(z-1)xy=1/(1-1/z)得出:z的取值范围:z>1.
z=x²+4y²-3xy≥4xy-3xy=xy所以xy/z≤1.xy/z取得最大值时xy=z且x=2y,所以z=2y².2/x+1/y-2/z=1/y+1/y-1/y
x^2+1/2y^2>=√2xyz^2+1/2y^2>=√2yz相加得x^2+y^2+z^2>=√2(xy+yz)所以(xy+yz)/(x^2+y^2+z^2)
4x/yz+y/xz+z/xy=2(x平方+y平方+z平方)/2xyz>=2(xy+yz+xz)/2xyz>=4xyz/xyz>=4
解:因为X,Y均为正实数所以X+Y≥2√XY(基本不等式)所以XY=8+X+Y≥2√XY+8XY≥2√XY+8XY-2√XY-8≥0(√XY-4)(√XY+2)≥0又√XY+2≥0所以√XY-4≤0解
题目有点问题,z/(xy)没有最大值.由条件z=x²+4y²-3xy,故z/(xy)=x/y+4y/x-3.取x=1,当y趋于0时,可知右端趋于正无穷.正确的说法可能是z/(xy)
z²/xy=(x+3y)^2/xy=(x^2+9y^2)/xy+6>=3+6=9z²/xy的最小值是9
由正实数x,y,z满足x2-3xy+4y2-z=0,∴z=x2-3xy+4y2.∴xyz=xyx2−3xy+4y2=1xy+4yx−3≤12xy•4yx−3=1,当且仅当x=2y>0时取等号,此时z=
xy+1=4x+y①∵x>0,y>0根据均值定理∴4x+y≥2√(4x*y)=4√(xy)②①②==>xy+1≥4√(xy)∴(xy)-4√(xy)+1≥0解得√(xy)≥2+√3或0
∵xy+z=(x+z)(y+z),∴z=(x+y+z)z∴x+y+z=1故xyz≤[13(X+Y+Z)]3=127当且仅当 x=y=z=13取等号即xyz的最大值是127;
3=x^n+y^n+z^n>=3*三次根号(xyz)^nxyz=3*三次根号(xy/z*xz/y*yz/x)=3*三次根号(xyz)=3
求xy的最大值就是求4xy的最大值就是求x.(4y)的最大值.记z=4y,原方程写做x+z+5=(xz)/4.所以xz=4(x+z+5).也就是说,x和z是下面这个方程的根:a^2-b.a+4(b+5
设x,y均为正实数,且xy=x+y+8,则xy的最小值为?x>0,y>0,且xy=x+y+8xy=x+y+8≥2√xy+8xy-2√xy+8≥0(√xy+2)(√xy-4)≥0√xy≤-2====>x
xy=8+x+y>=8+2√xy令√xy=t>0t²-2t-8>=0(t+2)(t-4)>=0所以t>=4即√xy的最小值=4xy的最小值=16.
2你的好评是我前进的动力.我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!再答:请采纳哦~O(∩_∩)O再问:在三角形ABC中,若向量AB与向量AC的数量积等于7,|AB
x²+5y²+4z²=(x²+4y²)+(y²+4z²)≥4xy+4yz=4(xy+yz)=40