若z=f(2x^3 3y^2,x y),其中f具有连续偏导数,求Zx,Zy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:19:02
(y-z)^2+(z-x)^2+(x-y)^2=(x+y-2z)^2+(y+z-2x)^2+(z+x-2y)^2[(y-z)^2-(y+z-2x)^2]+[(z-x)^2-(x+z-2y)^2]+[(
dz/dx=y(yf1'+2f2')dz/dy=f(xy,2x+y)++y(xf1'+f2')da/dxdy=(yf1'+2f2')+y【f1'+y(xf1'+f2')+2(xf1'+f2')】=2y
有这样的公式:a^3+b^3+c^2-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)左边减右边,证明:(x+y-2z)^3+(y+z-2x)^3+(z+x-2y)^3-3(x+y
1、由单变元的微分中值定理,有f(x,y)-f(x0,y)=f'x(c,y)*(x-x0)=0,于是f(x,y)的值只与y有关,故z=f(y).2、由1知道,当f'xy(x,y)=0时,f'y(x,y
%单纯从定义上没有错误,但是如果计算时xyz是数组或向量时就会报错,因为要求加点运算%试改为:f=@(x,y,z)(1+y).*z.^y-(-0.25*(x-1).^2+0.25).^x看看
1.x^2-y^2-2z^2=2x^2=2+y^2+2z^2>=2所以f(x,y,z)=-2x^2
两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a
4zexp(-2z),z>0
你只要X看成是是常数求导就行了,答案就不给你了,自己动手丰衣足食
δz/δx=y^2*f1+(2y-1)*f2δz/δy=2xy*f1+x^2y*2*f2再问:f1和f2是什么?再答:f1表示z对x求导,也可写成fx,(x为下标,在右下角,我不好打,不好意思!)这只
设a=x-y,b=y-z,-a-b=z-x(y-z)平方+(x-y)平方+(z-x)平方=(y+z-2x)平方+(z+x-2y)平方+(x+y-2z)平方b^2+a^2+(-a-b)^2=(-a-b-
令(y+z)/(1+yz)=X1,(y-z)/(1-yz)=X2,因为f(x)=lg((1+x)/(1-x))所以f(X1)=lg((1+X1)/(1-X1)=1,f(X2)=lg((1+X2)/(1
把代码补全一点,主要是注意返回类型!#include"stdio.h"intz=5;voidf(){staticintx=2;inty=5;/*x为静态变量,分配了以后直到程序结束,y没实际用到*/x
1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时
(x+y+z)²+(x-y-z)(x-y+z)-2·z(x+y)=(x+y)²+2z(x+y)+z²+(x-y)²-z²-2z(x+y)=(x+y)&
z=y/f(x²+y²),令u=x²+y²∂z/∂x=y·-1·[∂f(u)/∂u·∂(x²
=x²(y-z)+y²(z-x)+z²(x-z+z-y)=(y-z)(x²-z²)+(z-x)(y²-z²)=(y-z)(x-z)
f=x+1f+u=2x+3f+u+c=3x+8f+u+c+k=4x+15f(f,u,c,k)=(x+1)(2x+3)(3x+8)(4x+15)
根据公式(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac公式展开:得到(x^2+y^2+z^2=2xy-2yz-2xz)-(x^2+y^2+z^2-2xy-2yz+2xz)合并同类项