若∑an^2及∑bn^2收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:49:46
若∑an^2及∑bn^2收敛
若级数∑an^2和∑bn^2都收敛,求证:∑an的绝对值/n收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

若级数∑an收敛,则级数∑an^2 必收敛

未必.例如    an=[(-1)^n]/√n,则交错级数∑an收敛,但级数    ∑an^2=Σ(1/n)是调和级数,是发散的.

设级数∑(an)^2收敛 则级数∑an/n是收敛还是发散

若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因

若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?

如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.

级数∑Bn,∑An-A(n-1)收敛,证明∑An*Bn收敛

∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

设级数∑an、∑bn均收敛,则它们的柯西乘积是否收敛?

不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn

证明:若级数 ∑Un^2及 ∑Vn^2收敛,则 ∑(Un/n)收敛

你有问题也可以在这里向我提问:

若幂级数∑an(x-1)^n在x=-1处收敛,则此级数在x=2处(绝对收敛)

根据阿贝尔定理,级数在x=-1处收敛,则适合(-1,3)的一切x使该级数绝对收敛,x=2也在其中.

证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.

证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛

正项级数 an 收敛 bn小于等于an 则级数 bn 收敛 怎么证明?

这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,

求解幂级数习题若幂级数∑An乘以x的n次方和∑Bn乘以x的n次方的收敛半径是1和更号下5则幂级数∑(An+Bn)乘以x的

A和D都有可能,但是排除B和C因为按照复变函数里有关内容,结果是大于或等于两个收敛半径中较小的一个.

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+