若三角形ABC中,b c=2acosB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:07:51
∵AB=AC ∴△ABC为等腰三角形 ∴∠B=∠C ∵D为BC中点 ∴BD=CD ∵AB=AC∠B=∠C BD=CD ∴△ABD全等于△ACD(SAS) 2. 
由sinC=2sinA得AB=2BC=2V5,有余弦定理的cosC=(5+9-20)/6V5=-V5/5.则sinC=2V5/5所以S=1/2X3XV5Xsinc=3
/>|向量BA+向量BC|=|向量AC|∴|向量BA+向量BC|=|向量AB+向量BC|∴|向量BC-向量AB|=|向量BC+向量AB|∴|向量BC-向量AB|²=|向量BC+向量AB|
/>设BC=xAC=√2x根据余弦定理可得cosC=(x^2+2x^2-4)/(2√2x^2)=(3x^2-4)/(2√2x^2)sinC=√1-[(3x^2-4)^2/(2√2x^2)^2]=√(-
三角形ABC的周长/三角形ADE的周长=3/2三角形ADE的周长=三角形ABD的周长×2/3=24cm
延长BE交AC的延长线于F∵∠BFC+∠DAC=90°,∠BFC+∠CBF=90°∴∠DAC=∠CBF在⊿BCF,⊿ACD中∠DAC=∠CBF,AC=BC,∠ACD=∠BCF=90°∴⊿BCF≌⊿AC
根据向量减法可知:向量AC-向量AB=向量BC.向量AC×向量BC=1,向量AB×向量BC=-2,两式相减得:向量AC×向量BC-向量AB×向量BC=3,即(向量AC-向量AB)×向量BC=3,向量B
设AB上的垂直平分线与AB交于N点.∵M是BC的中点∴MN是⊿ABC的中位线∴MN∥AC又∵MN是AB的垂直平分线∴AC⊥AB∴⊿ABC是直角三角形、BC是斜边又∵AB=ACBC=10根号2,∴AB的
由C做CE‖AB,做BE‖AC相交于点E;连接ED;因ABEC是平行四边形,且三角形ABC≌EBC;所以AE=BC=2;平行四边形两对角线相等,则此平行四边形为矩形;设AB=c,AC=b;b+c=2.
G为重心,设BC边中点为D,则:AD=(AB+AC)/2AG=2AD/3=(AB+AC)/3,BC=AC-AB故:AG·BC=(AB+AC)·(AC-AB)/3=(|AC|^-|AB|^2)/3=(1
∵AB=根号2,AC=根号2,BC=2∴AB²+AC²=2+2=4=BC²∴三角形ABC是等腰直角三角形∴∠B=45°
设A(1,0),B(-1,0),C(X,Y)就可以根据AC=根2BC,列出方程,再化简,就是圆的方程,注意定义域,Y应该不等于零,因为ABC三点为三角形的三个顶点.其实这圆是著名的阿洛波尼厄斯圆,这一
三角形ABC是钝角三角形.证明:作CD垂直AB于D.角A=30度,则CD=AC/2=1/2,AD=√(AC²-CD²)=√3/2.BD=√(BC²-CD²)=√
选1步骤:AB^2=AB(AC+BC)+AC×BCAB^2-AB(AC+BC)-AC×BC=0(AB-AC)(AB+BC)=0或(AB+AC)(AB-BC)=0所以选1
三角形的面积=4分之根号3a²再问:亲,咱写点过程,好吗,谢啦。再答:边长是a,高与边长在一个直角三角形内,两个锐角分别是30°和60°,所以高是4分之根号3a所以面积是4分之根号3a
c=AB=2,a=BC,b=AC,b=根号2*a由余弦定理得a²+b²-2abcosC=c²=4即a²+2a²-2根号2*cosCa²=4,
∵b^2+c^2=a^2+bc,∴cosA=(b^2+c^2-a^2)/2bc=bc/2bc=1/2,∴sinA=√3/2又cosA=(→AB*→AC)/|AB||AC|,→AB*→AC=4∴1/2=
外接圆半径:公式:a/sinA=b/sinB=c/sinC=2R(R就是外接圆半径)先利用余弦定理:c^2=a^2+b^2-2ab·cosC求出:c=√(a^2+b^2-2ab·cosC),即AB=√
(海伦公式)(p=(a+b+c)/2)S=sqrt[p(p-a)(p-b)(p-c)]p=7.5S约为6.495