若公比q的等比数列an的首项a1=1 且满足2an=an-1 an-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:23:55
第二题:1/(X-1)=1X>=2所以不等式解集为X=2第一题公比q若为正数的话,哪么应该大于1,因为要是q
(1)由a3=14=a1q2,以及q=-12可得a1=1.∴数列{an}的前n项和Sn=1×[1−(−12)n]1+12=2−2•(−12)n3.(2)证明:对任意k∈N+,2ak+2-(ak+ak+
我猜你的题目给出的条件是a(n+2)=a(n+1)+2an,就像楼上所列正解如下a3=a2+2a1=2a1+1a4=a3+2a2=2a1+1+2=2a1+3又an为等比数列,a2=a1*q,a3=a1
a7=a1q^6;a4=a1q^3又因a1,2a7,3a4成筀等差数列,所以有:4a7=a1+3a4可得:4a1q^6=a1+3a1q^34q^6-3q^3-1=0(4q^3+1)(q^3-1)=0可
S4=a1(1-q^4)/(1-q)=5a1(1-q^2)/(1-q)1+q^2=5q^2=4因为q
设等比数列{an}的公比为q,前n项和为Sn,且Sn+1,Sn,Sn+2成等差数列,则2Sn=Sn+1+Sn+2.若q=1,则Sn=na1,式子显然不成立.若q≠1,则有2a1(1−qn)1−q=a1
n=1/anan=q的n-1次方bn=q的1-n次方bn=1+1/q+1/q²+…1/q的n-1次方bn的前n项和=(1-(1/q)的n次)/(1-1/q)
S1=a1(1-q)/(1-q),S2=a1(1-q^2)/(1-q),...,Sn=a1(1-q^n)/(1-q).S1+S2+...+Sn=[a1/(1-q)]*[1-q+1-q^2+...+1-
(本小题满分10分)证明 (1)当n=1时,左边=S1=a1,右边=a1(1−q1)1−q=a1,等式成立.(2)假设n=k(k≥1)时,等式成立,即Sk=a1(1−
楼上都不对,n=1时的时候,an通项并不是b*(q-1)*q^(n-2)1,由题意Sn=bq^(n-1)an=Sn-S(n-1)=bq^(n-1)-bq^(n-2)=(q-1)*b*q^(n-2)(n
当q=1时,S4=4a1,S6=6a1,S5=5a1此时2S6≠S4+S5不满足题意当q≠1时,有2a1(1−q6)1−q=a1(1−q4)1−q+a1(1−q5)1−q解得q=−12故答案为−12
∵{an+c}是等比数列∴(a1+c)(a3+c)=(a2+c)2即a1a3+c(a1+a3)+c2=a22+2a2c+c2∵a1a3=a22∴(a1+a3)c=2a2c即a1c(1+q2)=2a1q
首先得求的a1a4=5s2...a1q^3=5(a1+a1q)又.a3=a1q^2=2...所以.2q=5(a1+a1q)得.a1=(2q)/(5(1+q))又因为.a3=a1q^2=2得.q=1.2
等比数列an=a1*q^(n-1),Sn=a1(1-q^n)/(1-q)∴a3=2=a1*q^(3-1)=a1*q^2S4=5S2=>a1(1-q^4)/(1-q)=5*a1(1-q^2)/(1-q)
S4=a1(1-q4)/(1-q),S2=a1(1-q2)/(1-q),已知S4=5S2,则a1(1-q4)/(1-q)=5a1(1-q2)/(1-q),即q=±2,又公比q
(1)S1→3=a1(1+q+q^2)=a1*(1-q^3)/(1-q)S4→6=a4(1+q+q^2)=a1*(1-q^3)/(1-q)*q^3S7→9=a7(1+q+q^2)=a1*(1-q^3)
a(n)=a(1)q^(n-1).q不为1时,s(n)=a(1)[1-q^n]/(1-q).a(3)+a(4)+...+a(n)+a(n+1)+a(n+1)+a(n+2)-a(1)=a(3)+a(4)
S4=a1(1-q4)/(1-q),S2=a1(1-q2)/(1-q),已知S4=5S2,则a1(1-q4)/(1-q)=5a1(1-q2)/(1-q),即q=±2,又公比q
(1)q=1a(n+1)/Sn=1/nlim(an+1/Sn)=lim(1/n)=0=1-1∴q=1满足(2)q≠1Sn=a1(1-q^n)/(1-q)a(n+1)=a1*q^na(n+1)/Sn=[