若函数f x 等于loga(x+x分之一-4),a大于0且a不等于1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:02:38
f(x)=loga(x+1),f(x)的定义域为x>-1g(x)=loga(1-x),g(x)的定义域为x
加一分之一?f(x)是奇函数,就可以得到f(0)=0你把这个x=0带入就可以啦再问:好吧,谢谢你再答:如果这个方法不行,就用f(-x)=-f(x)一般都可以解决
我刚才的思路错了.正确的想法是g(t)=t^2+(loga2-1)t是关于t的一元二次函数,是开口向上的抛物线既然在[loga1/2,loga2]上是增函数,说明区间[loga1/2,loga2]在对
0因为根号≥0这是定理
1.22.a大于0小于1或a大于1小于2根号5对不对?再问:求详细过程--再答:1x^2-2x+5最小的4所以f(x)的最小值为22.分两种情况a大于0小于1和a大于1要使若对任意x属于(0,正无穷)
1.fx=loga(1-x)+loga(x+3)=fx=loga(1-x)*(x+3)=loga(-x^2-2x+3)=loga[-(x+1)^2+4]定义域:由1-x>0解出x0解出x>-3所以-3
a>0,且a≠1f(x)=loga(x+1)g(x)=√(1-x)f(x)+g(x)=loga(x+1)+√(1-x)零和负数无对数,x+1>0,x>-1根号下无负数,1-x≥0,x≤1定义域:(-1
要讨论,分a>1与00.当0
a>11/x递减,loga(x)递增loga(1/x+1)递减f(1)
fx=loga(x+1)-loga(1-x),x+1>0且1-x>0==>-1loga(1-x)当a>1时,则x+1>1-x==>x>0与定义域取交集得,x取值范围是(0,1)当0
x>0当 1<a时 函数递增当 0<a<1时 &nb
f(x)=loga(x)恒过(1,0)而你那个函数由我写的那个函数经过平移得到的.(左加右减,上加下减)故恒过(2,3)再答:请熟记以下7种,足够应付高中所有的函数变换题:(不妨设a>0)f(x)到f
1;求fx的定义域.1+x>0且1-x>0,得-10得(x+1)/(1-x)>1得0
f(x)=loga(1+x),g(x)=loga(1-x)h(x)=f(x)-g(x)的定义域就是f(x)和g(x)的定义域的交集,因此,定义域是-1
∵a-a^x>0∴x∈(-∞,1)又∵a>1∴logaT为单调递增函数∴T=a-a^x>0有最大值loga(a)=1∴fx∈(-∞,1)
f'=e^x+xe^x,g'=2ax+1f'-g'=e^x-1+xe^x-2axx>等于0时.恒有fx>等于gxf'-g'>0,解得a>0
当x≤1时f(x)=3x=2x=2/3当x>1时f(x)=-x=2x=-2因为x>1,所以则时无解所以x=2/3再问:那个是3x方再答:额.f(x)=3x^2=2x^2=2/3x=±√6/3±√6/3
把(-8/9,-2)代入得:-2=loga(1/9)得:a=3所以,f(x)=log3(x+1)x∈(-1,26]则:x+1∈(0,27]所以,log3(x+1)∈(-∞,3]即f(x)的值域为(-∞
f'(x)=2x+a>0x>-a/2-a/2=-2a=4
定义域(1+x)/(1-x)>0所以(1+x)(1-x)>0(x+1)(x-1)