若函数f x=2的X次方 LNX
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:49:06
答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:
设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可
1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可
f(x)=2x+lnx切线斜率即导数求导,带入f'(x)=x+1/xf'(1)=2
对f(x)求导得f'(x)=1-a/(2x),要求f(x)的单调增区间,则求f'(x)>=0,则1-a/(2x)>=0.即a/(2x)0时,x>=a/2,当a
fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a
将f(x)求导,得到f'(x)=2x-2/x=(2x^2-2)/x.由于定义域是x>0可以求出,它的单调区间是:0到1为减函数,1到正无穷为增函数.所以,它的极小值在1取到.把x=1带入,可以求出,它
解析:∵F(X)=X^3-2eX^2+mX-lnX ,记G(X)=F(X)/X则g(X)=X^2-2eX+m-lnX/x令G ‘(X)=2X-2e+(lnX-1)/x^2=0==&
令hx=fx-gx,x在[1,e]上hx恒小于0则hx=px-p/x-2lnx-2e/xh'x=p+p/x^2-2/x+2e/x^2=p(1+1/x^2)+(2e-2x)/x^2因为p>0,x在[1,
希望对你有所帮助 再问:请问当a属于(0,e)是怎样证明e平方x的平方-2分之5x大于(x+1)lnx呢?再答:我刚才还以为你 就问2问呢 嘿嘿 加油~~若可以
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
真数(1/2)的x次方-1>0(1/2)的x次方>1(1/2)的x次方>(1/2)的0次方因为(1/2)的x次方是减函数所以x再问:函数fx=3sin(2x+5m)的图像关于y轴对称,则负数m的最大值
只需(4-k*2的x次方)>0,即4>k*2的x次方对k讨论,若k=0,则,定义域为R若k>0则变为,4/k>2的x次方两边取对数即为ln(4/k)>xln2即为(ln(4/k))/(ln2)>x若k
f'(x)=1/x+2/x^2f'(x)一直都是大于0的,所以f(x)是增函数f(2)=ln2-10所以在(2,e)之间再问:请问像这样的题目该怎么去做呢谢谢!再答:大概的判断单调性,多试几个数就行了
1、对lnx知,x>0对f求导得:f'=1/x-2a/(x^2)f'>=0时,x>2a如果a0,无单减区间如果a>=0,则f的单增区间为x>=2a,此时单减区间为0
过P2=-a+b/ef'(x)=a+be^x斜率=-3f'(-1)=a+b/e=-3相加2b/e=-1b=-e/2a=-5/2f(x)=-5x/2-(e/2)*e^x
1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个
1.f(x)=2xlnx-1,f‘(x)=2(lnx+1),令f‘(x)=0,得x=1/e,f“(x)=2/x,f“(1/e)=2e>0,所以x=1/e为极小点,极小值=f(1/e)=(-2/e)-1
选项C有误利用零点存在定理即可fx=lnx-x分之2则f(1)=ln1-2/1=-2