若函数f(x)=ax^2 bx 1是定义在(-1-a,2a)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:19:30
(1)函数的定义域范围(-∞,0)∪(0,+∞),则f(-x)=-x-2ax=-(x+2ax)=-f(x).故函数f(x)是奇函数;(2)若a=2,函数在(2,+∞)单调增;证明:若a=2,则f(x)
1.求导数,得f'(x)=3x^2-2ax-3将极值点的横坐标-1/3代入方程f‘(x)=0解得a=4那么写出原函数单调区间负无穷到-1/3,递增-1/3到3,递减3到正无穷,递增那么在【1,4】上,
∵f(x)=4x+ax∴f′(x)=4−ax2∵函数f(x)=4x+ax在区间0,2上是减函数,∴f′(x)=4−ax2≤0在区间0,2上恒成立即a≥4x2在(0,2]上恒成立∵4x2≤16∴a≥16
分析:极值点导数为零,但是导数为零的点不一定是极值点;如果1/2左右两侧导函数值都为负,即都单调递减,那么它不是极值点一般判定极值点还是按照课本上列表进行判定,只有两侧单调性相反的才是极值点,否则不是
值域为R,即ax²-ax+1可取区间(0,+∞)上的任意值.若a=0,则ax²-ax+1变为1,f(x)=lg1=0,不满足题意,因此a≠0对于函数f(x)=ax²-ax
需讨论a的范围,当a>0时,不可能恒小于0当a=0时,f(x)=-2
1.对f(x)=ax^3-ax^2+[1/2f'(1)-1]x两边求导,得f'(x)=3ax^2-2ax+[1/2f'(1)-1];f'(1)=3a-2a+[1/2f'(1)-1];f'(1)=2a-
f(x)=ax^2+2ax+4=a(x+1)^2-a+4因为x10所以f(x1)-f(x2)=[a(-x2+1)^2-a+4]-[a(x2+1)^2-a+4]=a(-x2+1+x2+1)(-x2+1-
因为:f(m)=am^2+2am+4f(n)=an^2+2an+4所以:f(m)-f(n)=(am^2+2am+4)-(an^2+2an+4)=a(m^2-n^2)+2a(m-n)=a(m-n)(m+
a>1时,有:f(a)=a^3+1,f(1-a)=(1-a)^3,得:a^3+1>(1-a)^3,即:2a^3-3a^2+3a>0,即2a^2-3a+3>0,此不等式恒成立,故a>1为解.01/2,即
由题意知:x^2+ax+b=0的解为-2,3,知a=-1,b=-6.则af(-2x)=-4x^2-2x+61或x
由y=f(x)=ax+1x2+c,得x2y-ax+cy-1=0.当y=0时,ax=-1,∴a≠0.当y≠0时,∵x∈R,∴△=a2-4y(cy-1)≥0.∴4cy2-4y-a2≤0.∵-1≤y≤5,∴
解题思路:不对,由性质:相邻零点之间函数值同号可直接转化,不需要再用最值转化,用数形结合简单一些解题过程:最终答案:略
(1)由题意,函数f(x)的定义域为{x|x>0}…(2分)当a=2时,f(x)=x+2x+lnx,∴f′(x)=1−2x2+1x=x2+x−2x2…(3分)令f′(x)>0,即x2+x−2x2>0,
f(x)=x有等根,则delta=0,即(b-1)^2-4ac=01)f(x)
f'(x)=3x^2+2ax+b∵f(x)有2个极值点∴3x^2+2ax+b=0有2个不等实数根x1,x2∴Δ=4a^2-12b>03(f<x>)^2+2af<x>
|ax+2|
这道题的答案有问题哦,应该只有一个.而且图像不是上面所画的两种,f(x)是个单调函数~注意到f(x)=a(x^3+x)+2,很容易看出x^3+x在整个实数区域都是单调递增,这一点既可以描点画图看,也可