若函数fx在(1, ∞)区间上单调减
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:31:52
解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2
设在区间[-1,0]内有m>n,则f(m)-f(n)=(3^m-m^2)-(3^n-n^2)=(3^m-3^n)+(n^2-m^2)∵0≥m>n≥-1,∴(3^m-3^n)>0,(n^2-m^2)>0
你先把f(x)图像画出来,零点就是f(x)=a时候的解,就是y=a这条直线和你画出来的图像的交点,有10个,应该有对称的
1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可
f(x)=f(2-x)=f(x-2)所以f(x)是周期为2的偶函数因为在闭区间1,2是减函数所以在闭区间3,4上也是减函数
题目出错了吧?应该是当g(a)=1求f(x)的值域吧?再问:就是a=1再问:再答:原来有三问啊,这样啊,给我点时间我给你做了吧再问:我们正在考试你速度再答:(1)[(7/4),8](2)g(x)=-3
1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a
由于f(x)=x²+ax+2,并且g(x)=f(x)+x²+1,那么可以得到g(x)=2x²++ax+3,如果g(x)在区间(1,2)上有两个零点,那么有如图所示回答:
(2)若f(x)在区间(1,e]上的最大值为-3,求a的值a>=0时,f(x)=ax+lnx>0所以a
你好!第一问:由题意得0=1+0*1+cc=-1所以函数为f(x)=x^2+bx-1画出图像,抛物线开口向上,最小值为x=0时,y=-1第二问:由f(x)=x^2+bx-1可知抛物线的对称轴为:x=-
f(x)=ax^3+3x^2+3x(a≠0),f'(x)=3ax^2+6x+3,△/4=9-9a,1)i)a
若f(x)在(0,+∞)上的单调减函数,求a的取值范围f(x)=(ax-1)/(x+1)=(ax+a-a-1)/(x+1)=[a(x+1)-(a+1)]/(x+1)=a-(a+1)/(x+1)为保证f
设x1,x2是函数区间[2,5]内任意值,那么不妨令x1<x2,则:f(x1)-f(x2)=x1/(x1+1)-x2/(x2+1)=(x1-x2)/(x1+1)X(x2+1)因为2≤x1<x2≤5所以
任取X1小于X2属于(0,+无穷大)fx1-fx2=更号下x1的平方+1-aX1-更号下X2+aX2因为X1小于X2,切a大于1所以fx1-fx2大于0即fx1大于fx2所以函数在区间(0,+无穷大)
答案如图所示,友情提示:点击图片可查看大图答题不易,且回且珍惜如有不懂请追问,若明白请及时采纳,祝学业有成O(∩_∩)O~~~
f'(x)=3x^2+3(a-1)x-3a=3(x+a)(x-1)=0,得极值点x=-a,1讨论a:若a