若函数Z=f(x,y)在点(x0,y0)处的偏导数存在,则f(x,y)在该点连续

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:54:05
若函数Z=f(x,y)在点(x0,y0)处的偏导数存在,则f(x,y)在该点连续
设可微函数z=f(x,y)在点(x0,y0)取得极值,这下列说法错误的是

答案似乎应为C,B选项是正确的;fxy(x0,y0)=0并不是极值点的必要条件:参考:再问:我知道fxy(x0,y0)=0不是极值点的必要条件,但是我举了很多例子都发现要取极值,该点处fxy(x0,y

设函数u=F(x,y,z)在条件φ(x,y,z )=0和ψ(x,y,z )=0下在点(x0,y0,z0 )取得极值

u=F(x,y,z)在点(x0,y0,z0)取到极值,必然满足存在两个数λ1,λ2,使得P(x,y,z)=F(x,y,z)+λ1φ(x,y,z)+λ2ψ(x,y,z)在φ(x0,y0,z0)=0,ψ(

函数Z=f(x,y)的两个偏导数在点(x,y)连续是f(x,y)在该点可微分的什么条件啊?

偏导数在(x,y)连续,即f(x,y)在(x,y)连续可微,连续可微是可微的充分条件,但不是必要条件所以这个是充分不必要条件.

设函数f(x)=ax+1/x+b(a,b属于Z)曲线y=f(x)在点(2,f(2))处的切线方程为y=3.证明曲线y=f

f‘(x)=a-1/x²由题意得f(2)=2a+1/2+b=3f’(2)=a-1/4=0算出来不对啊--||额,暂时忽略这个问题f(x)=x+1/x-1f'(x)=1-1/x²设切

设函数f可微,z=f(ye^x,x/(y^2)) 求z/x,z/y

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

二元函数z=f(x,y)在点(x0,y0)处偏导数存在是f(x,y)在该点连续的什么条件?

偏导存在未必连续,比如偏x存在,那就关于x连续(根据一元函数的性质),但是整个不连续;连续也未必可导,偏导当然也未必存在再答:所以是既非充分又非必要条件再答:希望对你有帮助

函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?

答案为D,不一定可微.对于多元函数,当函数的个偏导数都存在时,虽然能形式的写出dz,但它与△z之差并不一定是较ρ较小的无穷小,因此它不一定是函数的全微分(根据全微分的定义,同济六版第70页),反例在7

二元函数z=f(x,y)在点(x0,y0)处的连续是函数在点(x0,y0)处可微分的什么条件

必要条件,如果在(x0,y0)点连续,并且在这点的左导数等于右导数,这时在(x0,y0)这点才是可导的(也就是可微分),而如果是已知可微分的话,那必定能推导出连续.

设二元函数z=f(x,y)在点P(0,1)的某邻域内可微,且f(x,y+1)=1+2x+3y+0(p),其中p=√(x^

有点难,以前学过的,现在好像忘记了.建议你看一看课本例题.

◆高数 多元函数微分学 证明 "设x = x(y, z),y = y(x, z),z = z(x, y)都是由方程F(x

再问:是否还能给出一种利用题目所给的条件(关于x,y,z的函数)去证明的方法吗?再答:这就是课本上隐函数求导公式的应用,你想得太多了,没有必要的!

高中数学 设函数f(x)=ax+1/(x+b) (a,b属于Z) 曲线y=f(x)在点(0,f(

y=ax+1/(x+b)y'=a-1/(x+b)^2x=2时,y'=a-1/(2+b)^2=0且f(2)=3,即2a+1/(2+b)=3解得a=1,b=-1(非整数解舍去)f(x)=x+1/(x-1)

复变函数:若f(x)在z.点解析,试证f(x)在z.点连续.

既然在z0解析,也就是说在z0的一个邻域可导,当然在z0点也是可导的.设在z0的导数为A,那么有f(z0+z)-f(z0)=Az+o(z),对于这个式子令z趋于0取极限就有f(z0+z)趋于f(z0)

3道高数题,1,函数F(x,y,z)=(e^x) * y * (z^2) ,其中z=z(x,y)是由x+y+z+xyz=

1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时

若函数f(x)在点x0不可导,则曲线y=f(x)在点x0的切线

1不可导,切线存在的.绝对值的X2不可导,切线不存在的.X分之一3都是在X=0处

一道大学微积分选择题关于函数z=f(x,y),在约束条件g(x,y)=0(f(x,y),g(x,y)处处可微)下的极值点

现在就你的问题向你提出本人见解,首先可以马上排除选项B,因为f(x,y)=0与等值线g(x,y)=c相切的点全部都满足f(x.y)=0,如果极值点出现在这些点当中,将意味着所求的极值z=f(a,b)恒

高数有关方向导数问题在椭球面2x^2+2y^2+z^2=1上求一点使函数f(x,y,z)=x^2+y^2+z^2在该点沿

设函数f(x,y,z)=x^2+y^2+z^2在点Q(x,y,z)处沿向量P的方向导数最大,因为函数在点Q处沿任意方向的方向导数的最大值是在梯度方向上取得,函数的梯度是向量(fx,fy,fz)=2(x

一道数分题,函数 f(x,y,z)=2x+y+4z 在约束条件 x²+y²+z²=16 下

由柯西不等式,(2^2+1^2+4^2)*(x^2+y^2+z^2)大于等于(2x+y+4z)^2解一下就可以了

1.求函数f(x,y,z)=x^2+y^2+z^2在限制条件x+y+z=1下的最小值

1.用拉格朗日乘数法没有用柯西不等式的方便(x²+y²+z²)*(1+1+1)≥(x+y+z)²=1当x=y=z时等号成立所以x²+y²+z