若函数Z=f(x,y)在点(x0,y0)处的偏导数存在,则f(x,y)在该点连续
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:54:05
答案似乎应为C,B选项是正确的;fxy(x0,y0)=0并不是极值点的必要条件:参考:再问:我知道fxy(x0,y0)=0不是极值点的必要条件,但是我举了很多例子都发现要取极值,该点处fxy(x0,y
u=F(x,y,z)在点(x0,y0,z0)取到极值,必然满足存在两个数λ1,λ2,使得P(x,y,z)=F(x,y,z)+λ1φ(x,y,z)+λ2ψ(x,y,z)在φ(x0,y0,z0)=0,ψ(
偏导数在(x,y)连续,即f(x,y)在(x,y)连续可微,连续可微是可微的充分条件,但不是必要条件所以这个是充分不必要条件.
f‘(x)=a-1/x²由题意得f(2)=2a+1/2+b=3f’(2)=a-1/4=0算出来不对啊--||额,暂时忽略这个问题f(x)=x+1/x-1f'(x)=1-1/x²设切
1.x^2-y^2-2z^2=2x^2=2+y^2+2z^2>=2所以f(x,y,z)=-2x^2
两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a
偏导存在未必连续,比如偏x存在,那就关于x连续(根据一元函数的性质),但是整个不连续;连续也未必可导,偏导当然也未必存在再答:所以是既非充分又非必要条件再答:希望对你有帮助
答案为D,不一定可微.对于多元函数,当函数的个偏导数都存在时,虽然能形式的写出dz,但它与△z之差并不一定是较ρ较小的无穷小,因此它不一定是函数的全微分(根据全微分的定义,同济六版第70页),反例在7
必要条件,如果在(x0,y0)点连续,并且在这点的左导数等于右导数,这时在(x0,y0)这点才是可导的(也就是可微分),而如果是已知可微分的话,那必定能推导出连续.
有点难,以前学过的,现在好像忘记了.建议你看一看课本例题.
再问:是否还能给出一种利用题目所给的条件(关于x,y,z的函数)去证明的方法吗?再答:这就是课本上隐函数求导公式的应用,你想得太多了,没有必要的!
y=ax+1/(x+b)y'=a-1/(x+b)^2x=2时,y'=a-1/(2+b)^2=0且f(2)=3,即2a+1/(2+b)=3解得a=1,b=-1(非整数解舍去)f(x)=x+1/(x-1)
既然在z0解析,也就是说在z0的一个邻域可导,当然在z0点也是可导的.设在z0的导数为A,那么有f(z0+z)-f(z0)=Az+o(z),对于这个式子令z趋于0取极限就有f(z0+z)趋于f(z0)
1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时
1不可导,切线存在的.绝对值的X2不可导,切线不存在的.X分之一3都是在X=0处
现在就你的问题向你提出本人见解,首先可以马上排除选项B,因为f(x,y)=0与等值线g(x,y)=c相切的点全部都满足f(x.y)=0,如果极值点出现在这些点当中,将意味着所求的极值z=f(a,b)恒
设函数f(x,y,z)=x^2+y^2+z^2在点Q(x,y,z)处沿向量P的方向导数最大,因为函数在点Q处沿任意方向的方向导数的最大值是在梯度方向上取得,函数的梯度是向量(fx,fy,fz)=2(x
由柯西不等式,(2^2+1^2+4^2)*(x^2+y^2+z^2)大于等于(2x+y+4z)^2解一下就可以了
1.用拉格朗日乘数法没有用柯西不等式的方便(x²+y²+z²)*(1+1+1)≥(x+y+z)²=1当x=y=z时等号成立所以x²+y²+z