若四阶方阵(A)=1,那么R(A*)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:07:10
若四阶方阵(A)=1,那么R(A*)=
设A为n阶方阵,A的秩R(A)=r小于n,那么在A的n个列向量中,

只有极大无关组(含r个向量)才能表示其余的向量任意r个列向量可能线性相关

证明如果A是n阶方阵,A*是A的伴随矩阵,那么 R(A*)=①n,R(A)=n,②1,R(A)=n-1,③R(A)=0,

当R(A)=n时,有A可逆,|A|≠0,由AA*=|A|E,说明A*可逆,R(A*)=n当r(A)=n-1时,有A不可逆,|A|=0所以AA*=|A|E=0,所以r(A*)<=n-r(A)=1.

A是N阶方阵,A的代数余子式都不为零,则R(A)>=n-1,

A的代数余子式为A的n-1阶子式,其满秩故A的秩>=n-1

线性代数问题n阶方阵A,A*为A的伴随矩阵,求证1:当r(A)=n-1时,r(A*)=1;2:当r(A)<n-1时,r(

1、当r(A)=n-1时:由于AA*=det(A)I=0Ax=0的基础解系的向量个数是n-r(A)=1所以r(A*)≤1又因为A*的矩阵元是A的n-1阶代数余子式,因为r(A)=n-1,必有不为零的代

线性代数,设A是(n≥2)阶方阵,证明A*是A的伴随矩阵,r(A*)=1的充要条件是r(A)=n-1.

首先,当AB=0时r(A)+r(B)=1,故r(A*)=1.再问:若r(A*)=1,那不是r(A)

若n阶方阵A满足A^2-3A-2E=O,那么A^-1=_,

A^2-3A-2E=OA^2-3A=2EA(A-3E)=2EA*[(A-3E)/2]=E自然A^-1=(A-3E)/2祝学习愉快请别忘记采纳

设A是四阶方阵,|A|=-2,则,|-3A^-1|=多少,R(A*)=多少

四阶矩阵,|-3A^-1|=(-3)^4*1/|A|=-81/2.A^-1存在,所以R(A*)=4满秩.

若A,B为3阶方阵,且r(AB)=3,那么r(B)= 在线等,求线性代数高手,有的hi我,高分找高手!

(B)=3啊!有结论r(AB)小于等于min{r(A),r(B)}而B是三阶矩阵所以r(B)=3

设A,B是n阶方阵,且r(A)=r(B),则

选项A,B,C是瞎扯,没这结论r(A+B)≤r(A)+r(B)正确,但与已知r(A)=r(B)没关系.怪怪的

线性代数题设A是n阶方阵,A*是A的伴随矩阵,试证:R(A*)=n 当R(A)=n时1 当R(A)=n-1时0 当R(A

根据等式AA*=|A|E1.当R(A)=n时,|A|≠0,|AA*|=|A|^n≠0,所以|A*|≠0,R(A*)=n2.当R(A)≠n时,|A|=0,AA*=|A|E=0,R(A)+R(A*)再问:

设A为n阶方阵,A*为A的伴随矩阵,证明:n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)

当R(A)=n时,有A可逆,|A|≠0,由AA*=|A|E,说明A*可逆,R(A*)=n当r(A)=n-1时,有A不可逆,|A|=0所以AA*=|A|E=0,所以r(A*)=1.所以r(A*)=1当r

设A为n阶方阵,证明:(1)若A^2=A,则r(A)+r(A-E)=n (2)若A^2=E,则r(A+E)+r(A-E)

这里边用到两个结论:r(A+B)=r(A+E-A)=r(E)=n.中间等号必须成立,因此r(A)+r(A-E)=n.2、(A+E)(A-E)=0,因此n>=r(A+E)+r(A-E)=r(A+E)+r

设A,B均为n阶方阵,且AB=0,证明r(A)=n-1时,r(A*)=1

AA*=|A|Er(A)=n-1,说明|A|=0因此AA*=0于A*的列向量为齐次方程AX=0的解向量从而r(A*)=1总之r(A*)=1

线性代数问题:求证:A是5阶方阵,R(A)=3,则A*=0 另对于n阶方阵A,R(A)

知识点:当r(A)=n时,r(A*)=n当r(A)=n-1时,r(A*)=1当r(A)A是5阶方阵,R(A)=3时,r(A*)=0,所以A*是零矩阵.另对于n阶方阵A,R(A)这个不对.应该是r(A*

一个线性代数问题.若两个n阶方阵A,B乘积为可逆矩阵.那么r(AB)=n 吗?

可逆矩阵对应的行列式值一定不为0,要是r(ab)不是n那么行列式ab就等于0了,不可逆,欢迎和我一起讨论.再问:你好,我刚学现代,不太懂,为什么r(AB)不是n,行列式就等于0了啊?再答:行列式的值可

设 a是方阵,a'是a的转置矩阵,且a'的秩r(a')=n-1则a的秩r(a)=

(a)=r(a')=n-1矩阵的秩与其转置矩阵的秩相等.

设A为n阶(n≥2)方阵,证明r(A*)= n ,r(A)=n r(A*)= 1,r(A)=n-1 r(A*)= 0,r

点击看大图:再问:当r(A)=n-1时,A至少有一个n-1阶子式不为0,那为什么A*≠0?再答:A*是由代数余子式Aij构成的Aij=(-1)^(i+j)MijMij包含了A的所有n-1阶子式所以至少

若A为n阶实方阵,证:r(A)=r(AT A)

1设方程AX=0则ATAX=0所以,满足AX=0的解一定满足ATAX=02设方程ATAX=0则XTATAX=0(AX)TAX=0所以AX=0,那么满足ATAX=0的解一定满足AX=0由12可知AX=0