若实数a,b满足a2 b2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:06:17
若实数a,b满足a2 b2
实数a,b,c,d满足a

从小到大的顺序是:a、c、b、d.证明如下:∵ab=cd<0,∴a和b异号、c和d异号,结合a<b,c<d,得:a、c是负数,b、d是正数.显然,两个较大的数相加,和也较大.由a+b<c+d,得:a<

若实数a、b满足b=a

根据二次根式的性质,被开方数大于等于0可知:a2-1≥0且1-a2≥0,解得a2=1,即a=±1,又0做除数无意义,所以a+1≠0,故a=1,b=0,所以a+b=1.

“实数a,b满足a2+b2

因为,满足a²+b²<5,的a,b不一定满足a+b≤2,而满足a+b≤2的a,b也不一定满足a²+b²<5

设实数a、b、c满足a

由条件得,bc=a2-8a+7,b+c=±(a-1),∴b、c是关于x的方程x2±(a-1)x+a2-8a+7=0的两实根,由△=[±(a-1)]2-4(a2-8a+7)≥0,解得1≤a≤9.

设x=a2b2+5,y=2ab-a2-4a,若x>y,则实数a、b满足的条件是______.

由x-y=a2b2+5-2ab+a2+4a=(a2b2-2ab+1)+(a2+4a+4)=(ab-1)2+(a+2)2.∵x>y,∴(ab-1)2+(a+2)2>0.则ab-1≠0或a+2≠0,即ab

若三角形的三边为a,b,c,且满足a4+b4+c4=a2b2+b2c2+c2a2,试说明该三角形为等边三角形.

a4+b4+c4=a2b2+b2c2+c2a2左右两边都×2整理得:2a4+2b4+2c4=2a2b2+2b2c2+2c2a2,写成完全平方的形式为:(a2-b2)2+(b2-c2)2+(c2-a2)

若实数a b c同时满足以下三个条件

选D你自己排除了AB项,看CD项不同之处在于,m能不能取值-3所以我们采用取值法按照条件规定,取值m=-3,a=-2,根据条件①的前半段平方等于0,求出b=-26/3,又bc<0,所以必须c>0按照条

已知实数a b c满足a

百度查一下

已知a,b是两个不为零的实数,且a2+b2=a2b2,求代数式

由a^2+b^2=a^2b^2得a^2=a^2b^2-b^2=b^2(a^2-1)∴(a^2-1)/a^2=1/b^2(b^2-1)/b^2=1/a^2a√(1-1/a^2)+b√(1-1/b^2)=

若实数a、b满足(a+b-2)2+b−2a+3

方法一:根据题意,得:a+b−2=0b−2a+3=0,解得a=53b=13;故2b-a+1=2×13-53+1=0;方法二:根据题意,得:a+b−2=0b−2a+3=0,两式相加得,2b-a+1=0.

实数A,B,C满足A

如图所示. |A+B|>|C|

已知实数a,b,c,满足c

a+b=1-ca²+b²=1-c²由2(a²+b²)≥(a+b)²所以2(1-c²)≥(1-c)²整理得3c²

已知实数a,b,c,满足a

题有问题.实数abc=0易知至少有一个为0.要求a再问:没有错再答:楼主请看:实数abc=0易知至少有一个为0。要求a

已知a,b均为实数,且满足ab+a+b=17;a²b+ab²=66.求a4+a3b+a2b2+ab3

解答如下:令a+b=x,ab=y则x+y=17xy=66由第一个方程可得x=66/y,所以66/y+y=17即yˆ2-17y+66=0(y-11)(y-6)=0即y=6或y=11当y=6时,

已知实数a、b满足a2+b2+a2b2=4ab-1,则a+b的值为______.

∵a2+b2+a2b2=4ab-1,∴a2-2ab+b2+a2b2-2ab+1=0,∴(a-b)2+(ab-1)2=0,∴a-b=0,ab-1=0,解得a=1,b=1或a=b=-1,∴a+b=2或-2

若实数abcd满足a*c=2*(b+d),

充分非必要的意思:a可以证明b成立,但是b不能反推出a成立,那么a是b的充分非必要条件.先证明由a*c=2*(b+d)可以推出关于x的两个方程x∧2+ax+b=0于x∧2+cx+d=0中至少有一个方程

第7题,若实数a,b满足

解题思路:利用几何概型的知识求解。解题过程:见附件最终答案:略

若实数a,b满足0

首先知道a1/2a²+b²=>2ab然后2aba+b=1(因为2b>1)所以1-2ab-ba²+b²