若总体X~N(μ,σ²),X1,X2,...,Xn试来自总体X的样本

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:17:47
若总体X~N(μ,σ²),X1,X2,...,Xn试来自总体X的样本
设总体X~N(μ,σ^2),X1,X2为来自总体X的样本,则(X1,X2)的联合概率密度为f(x1,x2)=______

就是两个正态概率密度乘积经济数学团队为你解答,有不清楚请追问.请及时评价.

设X1,X2,...,X6为来自正态总体N(0,σ^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X4+X

服从卡方分布,可以从x2的定义中知道,自由度为6,因为从x1到x6c的值不太清楚.

设X1,X2,...Xn是来自正态总体N(μ,σ^2)的简单随机样本

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设X1,X2,...Xn为来自正态总体X~N(μ,σ^2)的一个样本,μ已知,求σ^2的极大似然估计.

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设X1,X2,...Xn是来自正态总体X~N(μ,σ^2)的简单随机样本

因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+

设总体X~N(μ,σ2),X1…… X2n 是总体X的一个样本 令Y=∑(Xi+Xn+i-2Y)² 求EY

题干中总体X的样本均值的等式,将右侧分母上的2乘到左侧,右侧不就是解二第一行的两项相加吗?再问:在抽样分布那里有个∑EXiEXn+i=∑μ^2 。n+i是下标EXi=μ 这个我懂,

若总体X~N(μ,σ²),则样本均值X~()?

这是一个基本的定理,还是正态分布,方差要除以n,如图.经济数学团队帮你解答,请及时评价.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X服从正态N(μ,σ²),x1,x2,xn为其总体的样本,求该样本的联合概率密度

fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,

设总体X~N(0,σ^2),X1、X2为X的样本,求证(X1+X2)^2/(X1-X2)^2服从分布F(1,1)

N(0,σ^2)E(X1+X2)=EX1+EX2=0D(X1+X2)=DX1+DX2=2σ^2X1+X2~N(0,2σ^2)同理:X1-X2~N(0,2σ^2)所以1/√2σ(X1+X2)~N(0,1

数理统计问题总体X~N(μ,σ^2),有样本X1,X2,…Xn,设Y=0.5(Xn-X1),则Y~_____.

x1是个常数,做线性变化方差不变,均值变为y等号右边N(0.5(u-X1),delta^2)

设总体X~N(μ,16),X1,X2,...X9是来自该总体的一个样本,求样本方差介于6~14之间的概率

样本方差Sn运用定理(n-1)Sn^2/σ^2服从自由度为(n-1)的χ方分布代入数据(9-1)*6/16=3(9-1)*14/16=7查表+线性插入计算得P(χ^2(8)>3)=0.932P(χ^2

概率论:设总体X~N(u,σ^2),抽取容量为20的样本x1,x2…,x20.求:

再问:啊在书上看到了概念不好意思==三克油么么哒ww

1 总体X~N(2,4),X1,X2,X3,X4为样本,则(X1+X2+X3+X4)/4~( )

因为正态分布具有再生性,就是由这些样本经过变形组成的样本空间,仍然服从正态分布N(2,4),则E(X)=2,D(X)=4则E[(X1+X2+X3+X4)/4]=1/4[E(X1)+E(X2)+E(X3

设总体X~N(0,σ^2),参数σ>0未知,X1,X2,…Xn是取自总体X的简单随机样本(n>1)

(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的