若抛物线y=x2 bx 9的顶点在坐标轴上,则b的最大值是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:30:38
∵是正三角形∴三个角都为60度∴可以过顶点做垂线得出y=根号32x,y^2=2x
若抛物线y=x²+6x+c的顶点在x轴上,则x的值为?y=x²+6x+c=(x+3)²+c-9因为顶点在x轴上故:当x=3时,c-9=0故:c=9已知抛物线y=x&sup
抛物线y=3x平方+(m^2-2m-15)x-4的顶点横坐标为X=-(m^2-2m-15)/6,因为顶点在y轴上,所以-(m^2-2m-15)/6=0,m^2-2m-15=0,(m+3)(m-5)=0
Y=-X^2+4X+m-2=-(X-2)^2+m+2,顶点坐标为(2,m+2),Y=2[X^2+n/2X+(n/4)^2]+11-n^2/8=2(X+n/4)^2+11-n^2/8,(根据题意改b为n
若抛物线y=ax^2+bx+c的顶点在原点,则有判别式△=b^2-4*a*c=0且对称轴x=-b/(2a)=0所以b=0(a≠0)==>c=0而ax^2+bx+c=0的解是X1+X2=-b/a;X1*
若抛物线y=x^2+mx+4的顶点在x轴的正半轴上,则{m²-4×1×4=0-m>0解得:m=-4∴m的值为-4.
(1)设抛物线的解析式为y=kx2+a∵点D(2a,2a)在抛物线上,4a2k+a=2a∴k=∴抛物线的解析式为y=x2+a(2)设抛物线上一点P(x,y),过P作PH⊥x轴,PG⊥y轴,在Rt△GD
抛物线y=-x²+ax+b-b²=-(x-a/2)^2+b-b^2+a^2/4,其顶点为:(a/2,b-b^2+a^2/4)代入另一抛物线方程,得:b-b^2+a^2/4=a^2+
由题意得焦点在y轴上,即x=0,所以y=4所以焦点为(0,4)所以p=8,所以是x²=16y
根据定点坐标公式,定点横坐标应该等于x=-b/2ab为一次项系数;a为二次项系数所以可得,x=-4/-2=2又知定点在直线上,所以将此横坐标带入直线方程,解出纵坐标y=-9所以,顶点坐标为(2,-9)
∵y=x2+2mx+n=(x+m)2-m2+n,∴抛物线的顶点坐标为(-m,-m2+n),∴-12×(-m)+12=-m2+n,即2m2+m-2n+1=0①,∵抛物线过点(1,3),∴2m+n+1=3
若抛物线y=x²-2mx+m-3经过坐标原点则m-3=0m=3若抛物线的顶点在y轴上则-2m=0m=0
y=x²+bx+8=(x+2/b)²-b²/4+8定点坐标(-b/2,-b²/4+8)由题意得:-b/2
将y=x2+3x变形,可得:y=(x+32)2-94,则顶点坐标为(−32,−94),则此点位于第三象限.故选C.
抛物线方程y=x²-4x+a=(x-2)^2-4+a可知顶点在x=2处,在直线y=-4x-1上所以直线y=-4*2-1=-9所以顶点为(2,-9)解毕!~
顶点在Y轴上则y轴是对称轴则y=2(x-0)^2+h=2x^2+h=2x^2+mx-3所以m=0
抛物线的顶点坐标A(X,Y)X=-b/2a=-(-4)/2=2A在y=2x-1上,y=2*2-1=3∴顶点坐标A(2,3)
顶点在x轴上,即y=0当y=0时,得到方程-1/2x^2+mx-4=0x^2-2mx+8=0因为顶点在x轴上,所以方程只有1解即△=04m^2-32=0m=2√2或m=-2√2