若抛物线y²=2px的焦点与椭圆x² 6 y² 2 =1的右焦点重合则p

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:34:25
若抛物线y²=2px的焦点与椭圆x² 6 y² 2 =1的右焦点重合则p
已知:斜率为1的直线l过抛物线y^2=2px(p>0)的焦点F,且与抛物线交于A,B两点

直线为为y=x-p/2直接用抛物线第一定义,准线为x=-p/2AB=AF+BF=x1+p/2+x2+p/2=x1+x2+pAB=4,所以x1+x2+p=4x=y+p/2带入y^2=2px,有y^2=2

已知抛物线y^2=2px的焦点为F,过F的直线l与抛物线交于A,B两点

要证明以AB为直径的圆必与抛物线的准线相切,就要满足圆心O到准线的距离为AB一半(即半径).已知A(X1,Y1),B(X2,Y2),设焦点为F因为抛物线上任一点到焦点的距离等于其到准线的距离所以AB=

过抛物线y^2=2px(p>0)的焦点的直线与抛物线交于A,B两点,求OA*OB

对于抛物线y²=2px焦点为(p/2,0)设直线AB为x=my+p/2代入y²=2p(my+p/2)y²-2pmy-p²=0设A,B的坐标(x1,y1)(x2,

过抛物线y^2=2px(p>0)的焦点F任作一条直线l与抛物线交于P1、P2两点,

过点P1作P1Q1垂直准线于点Q1过点P2作P2Q2垂直准线于点Q2则:P1Q1+P2Q2=P1F+P2F=PP2即梯形P1Q1Q2P2的中位线等于P1P2的一半,即:P1P2的中点到准线的距离等于P

如图,过抛物线y^2=2px(p>0)的焦点F的直线与抛物线相交于M,N两点,

看得出你思路是利用向量相乘等于0,再利用维达定理,带入使等式为0.向量FM1和向量FM2是不是表示错了?应该用末点坐标减去初始点坐标,向量FM1=(x1-p/2,y1)

已知抛物线y^2=2px(p>0)的焦点F与双曲线x^2-y^2/x=1的右顶点重合,抛物线与直线

题目有误,请改正.再问:双曲线改为x^2-y^2/3=1再答:(1)F(1,0),抛物线方程是y^2=4x,①(2)把l:y=k(x-2),即x=my+2,②其中m=1/k,代入①,得y^2-4my-

如图,已知过抛物线y^2=2px(p>0)的焦点F的直线x-my+m=0与抛物线

答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!

已知抛物线C:y²=2Px的焦点与双曲线

X²/3一y²=1的右焦点为(2,0)所以p=4,抛物线C:y²=16x如图,可以看出过F点垂直于l的线段就是最短距离用公式得14/5再问:我也算到这个,不知对不对再答:

若抛物线y²=2px的焦点与双曲线x²/3-y²=1的右焦点重合,则p值为

对于双曲线,c²=3+1→c=2,即双曲线右焦点为(2,0).抛物线焦点为(p/2,0),∴p/2=2,即p=4.

求解高三数学题1.过抛物线y^2=2px(p>0)的焦点F的直线l与抛物线在第一象限的焦点为A,与抛物线的准线的焦点为B

1,设抛物线准线与x轴交于点D,由向量AF=向量FB,及抛物线定义AF=AC,可得Rt三角形ABC中,AC=1/2AB,故角ABC=30度设AC=x,则有AB=2x,BC=根号3x又向量BA和向量BC

抛物线y^2=2px与直线ax+y-4=0的交点是(1,2),则抛物线的焦点到该直线的距离

j结果是2倍根号5除以5.将(1,2)先代入y^2=2px.求出p=2.即可知抛物线焦点为(1,0).再代入直线方程,为2x+y-4=0.然后是点到直线公式的应用.用Word文档的特殊公式粘不过来.所

若抛物线y2=2px的焦点与双曲线x

双曲线x26−y23=1的a=6,b=3∴c=6+3=3∴右焦点F(3,0)∴抛物线y2=2px的焦点(3,0),∴p2=3,p=6.故答案为:6

7.过抛物线y*2=2px(p>0)的焦点F作倾斜角为45度的直线交抛物线与A,B两点,若线段AB的长为8,求抛物线的标

设A(x1,y1),B(x2,y2)抛物线y²=2px的焦点为(p/2,0)则AB的方程为y=x-p/2联立得(x-p/2)²=2px,即4x²-12px+p²

抛物线Y^2=2PX中过焦点F的直线与抛物线交于A,B两点,求AF分之一加BF分之一的值

设抛物线y²=2px(p>0),焦点坐标为F(p/2,0),A(x1,y1),B(x2,y2),过点F的直线方程为x=my+(p/2),代入y²=2px,得y²=2pmy

已知椭圆C离心率为1/2,椭圆上的点到焦点的最近距离为根号3,左右焦点为F1F2抛物线Y^2=2PX的焦点与F2重合求椭

已知椭圆C离心率为1/2,所以c/a=1/2即a=2c椭圆上的点到焦点的最近距离为根号3,所以a-c=根号3所以a=2根号3c=根号3b^2=a^2-c^2=9椭圆方程x^2/12+y^2/9=1F1

已知抛物线y²=2px的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线交与A,B两点,

解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4

抛物线y²=2px(p>0),已过焦点的弦为直径的圆与抛物线的准线的交点个数是?

1个,准线与该圆相切设弦为AB,AB中点为M,准线为l分别做AA'⊥l,BB'⊥l,垂足分别为A',B'ABB'A'为直角梯形则AF=AA',BF=BB'AA'+BB'=AF+BF=ABM到l的距离即