若数列1 N(N-1)的前N项和为Sn,且Sn=1920,则n=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:36:18
裂项an=(n+2)/[n!+(n+1)!+(n+2)!]=(n+2)[n!(1+n+1+(n+1)(n+2))]=(n+2)/[n!(n+2)^2]=1/[n!(n+2)]=(n+1)/(n+2)!
a=(2n-1)×2^(n-1)是这个吗?Sn=1×1+3×2+5×4+……+(2n-1)×2^(n-1)2Sn=1×2+3×4+5×8+……+(2n-3)×2^(n-1)+(2n-1)×2^n相减2
an=1/[(2n+1)(2n+3)]=[(2n+3)-(2n+1)]/[2(2n+1)(2n+3)]=(2n+3)/[2(2n+1)(2n+3)]-(2n+1)/[2(2n+1)(2n+3)]=1/
an=(n-1)*2^(n-1)sn=(1-1)*2^(1-1)+(2-1)*2^(2-1)+.+(n-1)*2^(n-1)2sn=2*(1-1)*2^(1-1)+2*(2-1)*2^(2-1)+.+
an=(2n-1)(1/4)^n=n(1/4)^(n-1)-(1/4)^nSn=a1+a2+..+an=[summation(i:1->n){i(1/4)^(i-1)}]-(1/3)(1-(1/4)^
an=2^n+n+1Sn=a1+a2+...+an=(2^1+1+1)+(2^2+2+1)+...+(2^n+n+1)=(2^1+2^2...+2^n)+(1+2+...+n)+(1+1+...+1)
an=[(n+1)^2+1]/[(n+1)^2-1]=1+2/[(n+1)^2-1]=1+2/[n(n+2)]=1+[1/n-1/(n+2)]Sn=a1+a2+...+an=n+[1+1/2-1/(n
M=1+2+3+…+n=[n(n+1)]/2N=1²+2²+3²+…+n²=[n(n+1)(2n+1)]/6P=1³+2³+3³+
典型的“等差*等比”型数列,用错位相减法Sn=2*3^1+3*3^2+4*3^3+...+(n+1)*3^n(1)3Sn=2*3^2+3*3^3+...+n*3^n+(n+1)*[3^(n+1)](2
(1/3)n(3n+2)=(1/3)n(3n+3)-(1/3)n=n(n+1)-n/3=(1/3)[n(n+1)(n+2)-(n-1)n(n+1)]-(1/6)[n(n+1)-(n-1)n](1/3)
(1)当n≥2时,an=Sn-Sn-1=n(2n-1)-(n-1)(2n-3)=4n-3,当n=1时,a1=S1=1,适合.∴an=4n-3,∵an-an-1=4(n≥2),∴an为等差数列.(2)由
an=Sn-Sn-1=1/3n(n+1)(n+2)-1/3n(n+1)(n-1)=n(n+1)所以1/an=1/n(n+1)=1/n-1/n+1数列(1/an)的前n项和=1-1/2+1/2-1/3+
(1)令n=1a1=S1=32-1+1=32Sn=32n-n²+1Sn-1=32(n-1)-(n-1)²+1an=Sn-Sn-1=32n-n²+1-32(n-1)+(n-
Sn=a1+a2+~+an=1+1/3^1+1+2+1/3^2+1+~+n+1/3^n+1=n(1+n)/2+[1/3×(1-1/3^n)]/(1-1/3)+n=(n^2-1/3^n+3n+1)/2
【方法1:强行展开a(n)表达式】1+2+……+n=n(n+1)/21^2+2^2+……+n^2=n(n+1)(2n+1)/61^3+2^3+……+n^3=n^2(n+1)^2/41^4+2^4+……
n=n(n+1)=n^2+nSn=b1+b2+...+bn=(1^2+1)+(2^2+2)+...+(n^2+n)=(1^2+2^2+...+n^2)+(1+2+...+n)=n(n+1)(2n+1)
因为Sn=2^n-1所以S(n-1)=2^(n-1)-1所以an=Sn-S(n-1)=2^(n-1)(n>=2)因为S1=a1=2^1-1=1=2^0所以an=2^(n-1)(n>=2)因为bn=n所
S=0.25n(n+1)(n+2)(n+3)再问:能提供方法么?谢谢!是用裂项么?再答:n(n+1)(n+2)=0.25[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
错位相减Sn=n*2^(n+1)
这是典型的错位相减求和,要举一反三!你拿张纸,先把Sn求和表达式写出来,要求写出a1+a2…+an-1+an四个就行;接着再起一行,写出2Sn的表达式,也写出2a1+2a2…+2an-1+2an就行.