若数列an²收敛,证an n收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:32:24
如果数列收敛到一个正数则必然有一项排在其后面的所有的(无限项)项都大于0.收敛到负数的情况类似.这里也可以推出:收敛到正数的数列只可能有有限多项是非正数(0或负数仅仅有限多项可以几千几万项很多但总是有
无界性
设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散
主观上来说:所谓“收敛”就是指“收敛于某处”,据此定义,收敛数列必有极限了,当然此极限值就是“收敛于”的“某处”啦具体可以参考第五版“高等数学”上册的“柯西审敛原理”充要条件自己可以推导出来
不妨设这个数单增,即a1=ank>ak所以数列ak是一个单增有上界的数列,所以收敛.进一步还可以说明ak→
打字没法儿排版,看图片吧!因为有下标,会显示较小,建议点击放大!【经济数学团队为你解答!】再问:谢谢您再答:如果满意,请采纳,谢谢!
根据柯西收敛准则,只需证明|a(n+p)-an|
比如an=1-1/n(当n是奇数)an=2-1/n(当n是偶数)显然数列{an}不收敛但如果令bn=a(2n)那么{bn}就是{an}的一个子列,且{bn}收敛于2于是{bn}就是{an}的一个收敛子
单调性用作差开证明,很明显是单增的,所以要找上界,上界可以适当放缩来找,把分母变小就可以,把分母里头的123…去掉,写成公比二分之一的等比数列求和,写出来很容易的看出上界是1,单调有界数列必收敛得证.
再问:可以告诉我图片在哪找的吗?|An|-a=|An-a||An-a|=||An|-|a||不懂、、再答:Mathtype自己编辑再问:对不起,智商不够用,An小于0是什么意思?再答:我是分情况讨论,
楼上说有问题.数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|
an^2收敛说明,an^2有界,就是说存在M>0,使得an^2
就是数列越往后,越趋近于某值,但并不能等于某值,只是无限接近,这时就说该数列极限存在,也就是数列收敛!
因为{xn}收敛于a,所以任给ε>0,存在正整数N,当n>N时,|xn-a|
利用收敛数列必有界.那么有界集合,必有上确界和下确界.收敛数列必有界的证明证明:若an→a,那么有对所有的e>0,存在自然数N,当n>N,时|an-a|N时a-e
1.T,用定义定理等易证.2.T,可直接从定义考虑.3.F,前者是数列,后者代表求和4.F,an=0,bn=1,0,1,1…5.F,an=0,1,0…bn=0,-1,0,…1.T,定理.2.F,对于英
不是,因为数列只是趋向于正无穷大,函数则不一样,有各种断点什么的
按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^