若数列an中,a1=1,a(n 1)-an=2n 3,你能求出an的通向公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:31:27
1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3
1.a(n+1)=4an-3n+1=>a(n+1)-(n+1)=4(an-n){an-n}是等比数列2.an-n=4^(n-1)*(a1-1)=4^(n-1)=>an=4^(n-1)+nSn=(1+4
an若为等差数列,则an=n.由bn=an+1+(-1)n次方乘以an可知bn奇数相都为1偶数项为2an+1所以前bn前n项和就好求了····但是看第二问觉得你题目打错了还是怎么的
a1=2=2/1a2=1/2+1=3/2a3=2/3+1=5/3a4=3/5+1=8/5a5=5/8+1=13/8所以对第n项的分母来说,有以下规律1,2,3,5,8,后一项是前一项与再前一项的和,由
a(n+1)=a(n)+n+1,a(n)=a(n-1)+(n-1)+1,...a(2)=a(1)+1+1,等号两边求和.有,a(n+1)+a(n)+...+a(2)=a(n)+...+a(2)+a(1
1/a(n+1)=(an+2)/2an=1/2+1/an1/a(n+1)-1/an=1/2所以1/an是等差数列,d=1/21/an=1/a1+1/2*(n-1)=(n+1)/2an=2/(n+1)
解:由于:an-a(n-1)=a(n-1)/n+(n+1)则:an=[(n+1)/n]*a(n-1)+(n+1)则:an/(n+1)=a(n-1)/n+1设bn=an/(n+1)则:b(n)-b(n-
a(n+1)/a(n)=(n+1)/na(n)/a(n-1)=n/(n-1).a2/a1=2/1依次相乘an=n*a1=2n
a(n+1)=an+3得到为等差数列an=3n-1联立所以n=670
/>a(n+1)=3an+n=3an+3n/2-n/2=3an+3n/2-(n+1)/2+1/2a(n+1)+(n+1)/2=3[a(n)+n/2]+1/2=3[a(n)+n/2]+3/4-1/4a(
A(n+1)=2An+1A(n+1)+1=2An+2=2(An+1)A1+1=1+1=2数列{An+1}是以2为首项,2为公比的等比数列An+1=2^nAn=2^n-1n=1时,A1=1也满足上式An
A(n+2)=6*(n+1)*2^(n+1)-A(n+1)A(n+2)-A(n+1)=(6n+12)*2^n-A(n+1)+AnA(n+2)=(6n+12)*2^n+AnA3=37A2=11d=26A
a1=3a2=2*a1a3=(2^2)*a2.an=(2^n)*a(n-1)迭乘得an=3*2^(n(n-1)/2)
an=2a(n-1)+1=2(2a(n-2)+1)+1=4a(n-2)+2+1=8a(n-3)+4+2+1=...=2^(n-1)a1+2^(n-2)+2^(n-3)+...+1=2^(n-1)+2^
a1=aa(n+1)+an=4n-1-->a(0+1)+a0=-1-->a1+a0=-1-->a0=-1-a(1)若a=1则a0=-1-1=-2a1=1a2=a(1+1)=4-1-a1=2a3=a(2
A(n+1)=An+ln(1+1/n)a(n+1)-an=ln(1+1/n)=ln【(n+1)/n】an=a1+(a2-a1)+(a3-a2)+(a4-a3)+.+(an-an-1)=2+ln(2/1
/>由题意可得:A(n+1)-An=2n则有:An=(An-A(n-1))+(A(n-1)-A(n-2))+(A(n-2)-A(n-3))+……+(A3-A2)+(A2-A1)+A1=2(n-1)+2
2a(n+1)-an=n-2/n(n+1)(n+2)2a(n+1)-2/(n+1)(n+2)=an-1/n(n+1)[a(n+1)-1/(n+1)(n+2)]/[an-1/n(n+1)]=1/2bn=
1an+1=an+6nan=an-1+6(n-1)..a2=a1+6*2a1=6-5Sn=Sn-1+6*(1+2+..+n)-5an=6*(1+n)n/2-5=3n(n+1)-52an*an+1=3^
解题思路:考查了数列的通项的求法,考查了指数的运算。解题过程: