若数列an满足 调和数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:02:06
由an+1+an−1an+1−an+1=n可得an+1+an-1=nan+1-nan+n∴(1-n)an+1+(1+n)an=1+n∴an+1=n+1n−1an−n+1n−1=1n−1(an−1)×(
1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3
{1/xn}是调和数列,1/(1/x(n+1))-1/(1/xn)=dx(n+1)-xn=d,为定值,即数列{xn}为等差数列,设公差为dx1+x2+...+x9=9x1+36d=9(x1+4d)=9
由an+1=an+2n,得an+1-an=2n,∴n≥2时,a2-a1=2,a3-a2=4,…,an-an-1=2(n-1),以上各式相加,得an-a1=(n-1)(2n-2+2)2=n2-n,∵a1
an若为等差数列,则an=n.由bn=an+1+(-1)n次方乘以an可知bn奇数相都为1偶数项为2an+1所以前bn前n项和就好求了····但是看第二问觉得你题目打错了还是怎么的
∵an+an+1=12(n∈N*),a1=−12,S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)=-12+12+…+12=−12+12×1005=502故答案为:50
a1=1,a(n+1)=an/(an+1),取倒数得:1/a(n+1)=(an+1)/(an).即1/a(n+1)=1/an+1,所以{1/an}是首项为1,公差为1的等差数列,1/an=1+(n-1
an+1=3an+2,a(n+1)+1=3an+3=3(an+1)数列{an+1}成等比数列q=3an+1=(a1+1)*3^(n-1)=3*3^(n-1)=3^nan=(3^n)-1
(1)∵an+1=2an+1∴an+1+1=2(an+1)∴数列{an+1}是等比数列∴an+1=(a1+1)×2^(n-1)=2^n∴an=2^n-1(2)设am≤0am+1≥0∴2m-49≤02(
你写错了应该是a(n+1)+x=3an+2+x所以a(n+1)+x=3[an+(2+x)/3]令x=(2+x)/3x=1所以a(n+1)+1=3(an+1)所以an+1是等比数列,q=3a1+1=3所
a(n)=a(n+3).不可能递增.
a(n+1)=an/1+ana(n+1)(1+an)=ana(n+1)+a(n+1)an=an两边除a(n+1)an1/an+1=1/a(n+1)1/a(n+1)-1/an=1所以数列{1/an}为等
根据题意{1/bn}为调和数列,则{bn}为等差数列所以b1+b2+……+b9=9b5=90b5=10所以b4*b6≤[(b4+b6)/2]^2=b5^2=100b4*b6的最大值为100
x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10
由已知得,数列{1/xn}为调和数列,则数列{xn}等差数列,x1+x2+…+x20=200,则(x1+x20)=(x2+x19)=...=(x5+x16)=200/10=20
d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n
(Ⅰ)点(an,an+1)在函数f(x)=2x²+2x上,即a(n+1)=2a(n)²+2a(n)2a(n+1)+1=4a(n)²+4a(n)+1=[2a(n)+1]
(1)由条件得:an+1=an2+4an+2,∴an+1+2=an2+4an+4=(an+2)2,∴{an+2}是“平方递推数列”.(2)由(1)得lg(an+1+2)=2lg(an+2)∴lg(an
选B这个啊,不难你题中的b是你看错了吧,应该是数字6,否则做不出∵数列是递增数列对于原来的函数,是分段的,前面是直线,后面是指数形式递增的话就有(3-a)>0a>1初步解出1<a<3当然这样还不够,这
由题意知:∵数列{1xn}为调和数列∴11xn+1−11xn=xn+1−xn=d∴{xn}是等差数列 又∵x1+x2+…+x20=200=20(x1+x20)2∴x1+x20=20又∵x1+