若数列an满足 调和数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:02:06
若数列an满足 调和数列
已知数列{an}满足a

由an+1+an−1an+1−an+1=n可得an+1+an-1=nan+1-nan+n∴(1-n)an+1+(1+n)an=1+n∴an+1=n+1n−1an−n+1n−1=1n−1(an−1)×(

若数列{An}满足A1=1,A(n+1)=An/(2An + 1)

1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3

数列{an}满足1/an+1-1/an=d叫调和数列,已知数列{1/xn}为调和数列,x1+x2

{1/xn}是调和数列,1/(1/x(n+1))-1/(1/xn)=dx(n+1)-xn=d,为定值,即数列{xn}为等差数列,设公差为dx1+x2+...+x9=9x1+36d=9(x1+4d)=9

若数列{an}满足a

由an+1=an+2n,得an+1-an=2n,∴n≥2时,a2-a1=2,a3-a2=4,…,an-an-1=2(n-1),以上各式相加,得an-a1=(n-1)(2n-2+2)2=n2-n,∵a1

数列an中,a1=1,a2=2数列bn满足an+1+(-1)n次an,a属于N* (1)若an等差数列...

an若为等差数列,则an=n.由bn=an+1+(-1)n次方乘以an可知bn奇数相都为1偶数项为2an+1所以前bn前n项和就好求了····但是看第二问觉得你题目打错了还是怎么的

数列{an}满足a

∵an+an+1=12(n∈N*),a1=−12,S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)=-12+12+…+12=−12+12×1005=502故答案为:50

若数列an满足a1=1,且an+1=an/1+an.证明:数列1/an为等差数列,并求出数列an的通项公

a1=1,a(n+1)=an/(an+1),取倒数得:1/a(n+1)=(an+1)/(an).即1/a(n+1)=1/an+1,所以{1/an}是首项为1,公差为1的等差数列,1/an=1+(n-1

若数列{An},满足关系a1=2,an+1=3an+2,求数列的通项公式

an+1=3an+2,a(n+1)+1=3an+3=3(an+1)数列{an+1}成等比数列q=3an+1=(a1+1)*3^(n-1)=3*3^(n-1)=3^nan=(3^n)-1

(1)若数列{an}满足:a1=1,an+1=2an+1(n属于正整数),则该数列的通项公式an=?

(1)∵an+1=2an+1∴an+1+1=2(an+1)∴数列{an+1}是等比数列∴an+1=(a1+1)×2^(n-1)=2^n∴an=2^n-1(2)设am≤0am+1≥0∴2m-49≤02(

若数列an满足a1=2,a(n+1)=3an+2,求数列的通项公式

你写错了应该是a(n+1)+x=3an+2+x所以a(n+1)+x=3[an+(2+x)/3]令x=(2+x)/3x=1所以a(n+1)+1=3(an+1)所以an+1是等比数列,q=3a1+1=3所

【高考】若数列{an}满足,a1=1,且a(n+1)=an/1+an,证明,数列{1/an}为等差数列,并求出数列{an

a(n+1)=an/1+ana(n+1)(1+an)=ana(n+1)+a(n+1)an=an两边除a(n+1)an1/an+1=1/a(n+1)1/a(n+1)-1/an=1所以数列{1/an}为等

若数列an满足1\an+1-1\an=d(d为常数)则数列an为调和数列 已知正项数列1\bn为调和数列 且b1+b2+

根据题意{1/bn}为调和数列,则{bn}为等差数列所以b1+b2+……+b9=9b5=90b5=10所以b4*b6≤[(b4+b6)/2]^2=b5^2=100b4*b6的最大值为100

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

若数列{an}满足1/an+1-1/an=d(n为正整数d为常数),则称数列{an}为调和数列,已知数列{1/x}为调和

由已知得,数列{1/xn}为调和数列,则数列{xn}等差数列,x1+x2+…+x20=200,则(x1+x20)=(x2+x19)=...=(x5+x16)=200/10=20

已知数列{an},如果数列{bn}满足b1=a1,bn=an+a(n-1)则称数列{bn}是数列{an}的生成数列

d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.

(Ⅰ)点(an,an+1)在函数f(x)=2x²+2x上,即a(n+1)=2a(n)²+2a(n)2a(n+1)+1=4a(n)²+4a(n)+1=[2a(n)+1]&#

(2007•长宁区一模)定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中

(1)由条件得:an+1=an2+4an+2,∴an+1+2=an2+4an+4=(an+2)2,∴{an+2}是“平方递推数列”.(2)由(1)得lg(an+1+2)=2lg(an+2)∴lg(an

已知f(x)={(3-a)*x-3(x7)},数列{an}满足an=f(n),n∈N*,若数列{an}是递增数列,则(a

选B这个啊,不难你题中的b是你看错了吧,应该是数字6,否则做不出∵数列是递增数列对于原来的函数,是分段的,前面是直线,后面是指数形式递增的话就有(3-a)>0a>1初步解出1<a<3当然这样还不够,这

若数列{an}满足1a

由题意知:∵数列{1xn}为调和数列∴11xn+1−11xn=xn+1−xn=d∴{xn}是等差数列 又∵x1+x2+…+x20=200=20(x1+x20)2∴x1+x20=20又∵x1+