若数列an的通项公式为an=n 156 n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:11:00
n=1时,S1=a1=2a1-1,a1=1n≥2时,an=Sn-S(n-1)=(2an-1)-(2a(n-1)-1)an=2a(n-1),故an=2^(n-1).
an+1 = an/(2-an)1/ an+1 = (2-an)/ an1/ an+1 = 2/ a
(1)由n2-5n+4<0,得1<n<4,故数列中有两项为负数;(2)an=n2-5n+4=(n−52)2-94,因此当n=2或3时,an有最小值,最小值为-2.
前n项的和Sn=1*3+2*3^2+3*3^3+.+n*3^n(1/3)Sn=1+2*3+3*3^2+.+n*3^(n-1)(1/3)Sn-Sn=1+3+3^n+.+3^(n-1)-n*3^n-(2/
没有最大,只有最小an>=2√(n*156/n)=2√156当n=156/n时取等号n²=156则12
a(n)=-3n+104>0得n
a(1)=s(1)=(2/3)a(1)+1/3,a(1)=1.s(n)=(2/3)a(n)+1/3,s(n+1)=(2/3)a(n+1)+1/3,a(n+1)=s(n+1)-s(n)=(2/3)a(n
a1=31-3=28,公差为3Sn=(28+31-3n)*n/2=(59-3n)n/2先判断从第几项开始为负数an=31-3n<0n>10.3即从第11项开始为负数前10项为整数则|a1|+|a2|+
因为A(n+1)-An=1/(n+1+1)+1/(n+2+1)+.+1/(n+1+n+1)-[1/(n+1)+1/(n+2)+.+1/(n+n)]=1/(2n+1)+1/(2n+2)-1/(n+1)=
利用作差法即可a(n+1)-a(n)=(n+1)²+λ(n+1)-[n²+λn]=2n+1+λ由已知条件,{an}是递增数列∴2n+1+λ>0恒成立∵2n+1+λ的最小值是2*1+
a(n+1)-an=a*(n+1)^2+n+1-an^2-n=2na+a+1当n≤4时,2na+a+1>0a>-1/(2n+1)≥-1/9当n≥8时,2na+a+1
An=n/n^2+196=An=1/n+196这是一个递减的数列第一项就最大,是不是题目错了
请用均值不等式思想去解题!将分子分母同时除以n,你会发现的.
a(n+1)-an=-2(n+1)^2+k(n+1)-(-2n^2+kn)=-4n-2+k由于数列{an}为递减数列,则对于任意的n∈N*总有a(n+1)-an≤0恒成立即:-4n-2+k≤0对于任意
令b[n]=a[2n],c[n]=a[2n+1]b[n],c[n]均是等差数列直接用求和公式再反带回去
注:数学符号不好输入,你将就着看吧.等差数列的公差d=(An)-(An-1)这里只要能够证明这个d是个固定值不随N的变化而变化或常数就可以了而(An)-(An-1)=lg2^n-lg2^(n-1)=l
an=n/(n^2+196)1/an=n+196/n>=2(196)^(1/2)(2倍的根号下196,均值不等式)=32所以an最大1/32
由an+1an=78(n+3)n+2=7n+218n+16=78(1+1n+2)≥1,解得n≤5,又1n+2单调递减,∴当n=5或6时,an取得最大值.故答案为:5或6.
a(n+1)=2an/(an+2)1/a(n+1)=(an+2)/(2an)=1/an+1/21/a(n+1)-1/an=1/2,为定值.1/a1=1/1=1数列{1/an}是以1为首项,1/2为公差
数列{an}的前n项和对n=1也成立,故把n=1代入,结果应为3,只有答案C符合.故选 C.