若无向图中只有两个奇数度顶点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:05:32
找规律的方法:画出度为3的树的最简单形式,计算每增加一个度为3的节点同时增加几个叶子节点可知:2n-1=leaf(n为度为3的节点数,leaf为叶子节点数)所以当n=3时,leaf=2*3-1=5
n个顶点度数为d(xi)(1≤i≤n)则d(xi)可以取0,1,2...,n-1可以取n个不同的值若存在d(xi)=0则不可能存在d(xi)=nn个d(xi)取n-1个不同的值由鸽笼原理必有d(xm)
就是9个这个可以构造性的方法来说明构造:这样的图至少有9个顶点证明:假设有8个顶点,则8个顶点的无向图最多有28条边且该图为连通图连通无向图构成条件:边=顶点数*(顶点数-1)/2顶点数>=1,所以该
(数学归纳法)当n=3个顶点时候,明显假设当n=k,k为奇数时,没有Hamiton圈.1当n=k+2时,假设有hamiton圈那么由于是二分图,圈中相邻顶点属于不同group,假设ABCD是圈中四个相
酒精和二氧化碳!乳酸只是在人体或动物体内特定环境下才会产生
1.真.2.假.3.4.5.真.6.假7.假.8.假.9.假.10.假.11.真.12.13.14.15.仅供参考
设连通图G有(n+1)个顶点,若每个顶点连出至少两条边,那么此时至少有n+1条边(任意图上所有顶点度数和等于边数的两倍),结论已经成立.否则,那么至少有一个顶点只连出一条边.不妨设为A,由于去掉这条边
无向连通图奇点的个数k一定为偶数,因此要想把G变成无奇点的图,至少需要加k/2条边.
反证法.假设所有顶点的度数最多为2,则度数总和D≤2n≠2(n+1),与握手定理矛盾.
对于一笔画问题,有两个判断的准则,它们都由欧拉提出并证明[1].定理一有限图G是链或圈的充要条件是:G为连通图,且其中奇顶点的数目等于0或者2.有限连通图G是圈当且仅当它没有奇顶点.证明:*必要性:如
首先用排列选出放偶数的两个位置,也就是4中选2的排列,为6;偶数位置确定了,奇数位置也就确定了.然后偶数排列可能为5×4,奇数排列也为5×4.因为以上是分步进行的,所以要乘起来,就是2400.但是因为
B:质数指数的定义就是约数只有1和它本身A:不对:例如9C:不对:如4
这个题目涉及到了两个主要的知识点,一个是数据结构中的有向图的邻接矩阵的typedefstruct{verv[n];//顶点edge[n][n];//边权}graph
#include"utility.h"#include"adj_matrix_undir_graph.h"#include"adj_list_dir_graph.h"#include"dfs.h"#i
#include#include#include#includeusingnamespacestd;constintMaxVertices=10;constintMaxWeight=10000;cla
G其实就是树.首先,如果G中每对顶点间具有唯一的通路,那么G当然是连通的.选取G的一个顶点,记为第1层顶点,所有和第一层顶点相邻的顶点记为第2层顶点,如此等等.主要到每个第n+1层的顶点都与一个第n层
这个其实很好办的,在有向图的基础上,作如下修改.创建有向图的过程中,用一个数来表示是否相连,可以设置weight为1或0.可以在确定一条弧的两个顶点后,locate其位置后将其的权值定为1或0,1表示
//quee是线性表Biao是邻接表如果Biao[i]直接声明为quee那么可以去掉.tail下面大概是算法具体实现可根据需要修改for(i=0;i<n;i++)Biao[i].tail=nil