若无穷级数un收敛,则un k是否收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:59:07
果断收敛啦用比较判别法很容易得出结论的
级数收敛的必要条件是一般项的极限为0.即lim(Un-1)=0,所以lim(Un)=1.再问:问一下为什么∫xdx=∫1dx再问:应该是∫xdlnx为什么等于∫1d x再答:再问:为什么l
正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2
因为limn^2*un存在,于是n^2*un有界,即存在M>0,使得|n^2*un|
你有问题也可以在这里向我提问:
收敛区间指的是开区间.x=1时,∑anx^n条件收敛,所以收敛半径是1,收敛区间是(-1,1).
(2^n)(a^n)=(2a)^n要使级数收敛,2a
∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
对于正项级数来说是成立的,但对于任意项级数来说则不一定成立了再问:能举个例子吗?再答:比如说级数un=(-1)^n/√n显然交错级数收敛而vn=(-1)^n/√n+1/n易知limvn/un=1但vn
设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
由 ∑(n>=1)u(n)=s,可得 ∑(n>=1)[u(n)+u(n+1)] =∑(n>=1)u(n)+∑(n>=1)u(n+1) =2s-u(1).再问:(Un+Un+1)=(u1+u
∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
这是错的.比如Un=1/n
不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可
级数(un-un-1)收敛于0
这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以
-1/2,用收敛的必要条件.经济数学团队帮你解答.请及时评价.再问:谢谢还有道题目概念都不理解--再答:请先采纳,再追问。再问:少了阶乘符号了吧?再答:是抄漏了,不好意思。
lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0