若曲线y^2=xy 2x k通过
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:46:30
斜率是2x+y?由y'=2x+y,即y'-y=2x,对应的线性齐次方程y'-y=0的通y=Ce^x用常数变易法,得到C(x)=(-2x-2)e^(-x)+C所以原方程通y=Ce^x-2x-2由y(0)
曲线的切线斜率为dy/dxdy/dx=2x+y,就是y'-y=2x首先考虑特解,显然y=-2x-2是方程的一个特解而对于y'-y=0,可以知道dy/y=dxlny=x+Cy=Ce^x所以方程通解为Ce
将(a,-a)代入曲线方程,有:(-a)^2=a*(-a)+2a+k2a^2-2a=ka^2-a=k/2a^2-a+1/4=k/2+1/4(a-1/2)^2=k/2+1/4>=0k>=-1/2
f'(x)=4x³-6x切点(a,b)在曲线上b=a^4-3a²+6斜率f'(a)=4a³-6a切线是y-(a^4-3a²+6)=(4a³-6a)(x
y'=2x-yy'+y=2x对应齐次方程的特征多项式为:r+1=0r=-1设特解为:y*=ax+b代入原方程后得:a=2b=-2故通解为:y=ce^(-x)+2x-2将y(0)=0代入得:c=2故曲线
y^2-xy+2x+k=0通过(a,-a),带入(-a)^2-a*(-a)+2a+k=02a^2+2a+k=0判别=4-4*2k>=0k
将点(a,-a)(a∈R)代入曲线并化简,得a^2-a-k=0因为曲线存在,所以a^2-a-k=0一定存在解,所以△≥0即k≥1/4再问:额答案不对是[-1/2,+∞)再答:那你的問題應該是y^2=x
y²y''+1=0y^2y''=-1两边积分得y^3/3*y'=-x+C1x=0,y=1/2,y'=2代入得1/24*2=C1C1=1/12y^3/3*y'=-x+1/12两边再积分得y^4
y=-y'*x还有条件x=2,y=3解方程即可得出函数y,这个方程我也不会解了这个句好其实很明显的,现在在坐标平面任意给你一点,经过它的一条直线,设斜率为k(也就是y的导数),然后截距x,y也就知道了
由题意,得y'=2x+yy(0)=0j解y‘=2x+yy’-y=2xy=e^∫dx[∫2xe^(-∫dx)dx+c]=e^x(-2xe^(-x)-2e^(-x)+c)代入x=0,y=0,得0=-2+c
这个需要自己判断,将点(0,-4)代入曲线方程y=x^2/3,显然不满足方程,所以这个点不是曲线上的点,我们要求的是经过这个点且与曲线相切的直线方程如有不明白请继续追问,
曲线的切线斜率为dy/dxdy/dx=2x+y,就是y'-y=2x首先考虑特解,显然y=-2x-2是方程的一个特解而对于y'-y=0,可以知道dy/y=dxlny=x+Cy=Ce^x所以方程通解为Ce
将点(a,-a)代入曲线y²=xy+2x+k方程中,得:a²=-a²+2a+k那么k=2a²-2a=2(a-1/2)²-1/2≥-1/2即k的取值范围
把(a,-a)代入(-a)^2=a(-a)+2a+kk=2a^2-2a=2(a-1/2)^2-1/2>=-1/2所以k>=-1/2
将点(a,-a)代入曲线y²=xy+2x+k方程中,得:a²=-a²+2a+k那么k=2a²-2a=2(a-1/2)²-1/2≥-1/2即k的取值范围
/>f(x)=∫x/2dx=x²/4+C把点(2,2)代入上式得f(2)=2²/4+C=2解得C=1所以f(x)=x²/4+1答案:f(x)=x²/4+1
y=12x-cosx的导数为y′=12+sinx,则在x=π6处的切线斜率为12+12=1,切点为(π6,π12−32),则在x=π6处的切线方程为y-(π12−32)=x-π6,即x-y-π12-3
令p=y',则y"=pdp/dy代入方程:y²pdp/dy+1=0pdp=-dy/y²积分:p^2/2=1/y+C1因为y(0)=1/2,y'(0)=2,代入上式得:4/2=2+C
过点(a,-a),a²+a²+2a+k=0k=-2a²-2a=-2(a²+a+1/4-1/4)=-2(a+1/2)²+1/2所以k≤1/2