若曲线为球面被平面所截得的圆周,则第一类曲线积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:16:26
若曲线为球面被平面所截得的圆周,则第一类曲线积分
已知球的半径为2,互相垂直的两个平面分别截得球面得两个圆,若两圆公共弦长为2,则两圆圆心距为?

这个很简单的啊两圆面圆心以及公共弦长的中点四点相连可构成一个矩形,这个没问题撒,(两个截面垂直,然后根据球的性质,球心到圆心的连线垂直圆面)然后圆心距即为矩形的对角线也就没没问题了撒球心到弦两端的距离

求下列第一型曲线积分 ∫L√(2y^2+z^2)ds,其中L为球面x^2+y^2+z^2=a^2与平面x=y的交线.

你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲

求下列第一型曲线积分 ∫L|y|ds,其中L为球面x^2+y^2+z^2=2与平面x=y的交线

x²+y²+z²=2x=y∴2x²+z²=2所以L的参数方程为:x=y=cosθ,z=√2sinθ,0≤θ≤2πds=√(x'²+y'

【求助】【图】平面所截圆锥的曲线是什么曲线

椭圆的一部分,把圆锥延长,其实就是1的情况

三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=

连接AC1 , 求得AC1=C1C=AC=2,取C1C的中点E,连接AE,因为三角形AC1C是等边,所以AE⊥C1C,连接DE,AD,因为直角三角形ABC,BD/DC=1/2,可以

已知球的半径为5,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为23,若其中一个圆的半径为23,则另一个圆的半径

设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是OO1=O2E=13,AE=12AB=3∴O2A=13+3=4∴圆O2的半径为4故选B.

球面x^2+y^2+z^2=50被锥面x^2+y^2=z^2所截曲线方程是什么?怎么求?

解这两个方程所组成的方程组即可.两式相减:z²=50-z²,得:z=5或-5故x²+y²=25因此曲线是两个半径为5的圆.

已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N

∵圆M的面积为4π∴圆M的半径为2根据勾股定理可知OM=23∵过圆心M且与α成60°二面角的平面β截该球面得圆N∴∠OMN=30°,在直角三角形OMN中,ON=3∴圆N的半径为13则圆的面积为13π故

高数题,曲线积分若曲线L为球面x2+y2+z2=a2被平面x+y+z=0所截得的圆周,则第一类曲线积分∫L(x2+y2+

因为曲线L位于圆周上,所以x2+y2+z2=a2故∫L(x2+y2+z2)ds=a2∫Lds=a^2*2PI*a=2PI*a^3

曲面x^2-2y^2+z=2被xoy平面所截得的曲线绕y轴旋转一周所成的旋转曲面方程

联立方程x^2-2y^2+z=2与z=0,可解得xoy面上曲线方程x^2-2y^2=2.接着令x=(+或-)(x^2+z^2)^(1/2),然后解得方程x^2+z^2-2y^2=2

为什么一平面在圆锥上截得的曲线为双曲线、椭圆或抛物线?可以证明嘛?

这个是可以证明的.方法较多,其中最巧妙的是Dandelin双球证明方法.这里不给你证明了,图也不好画,写的较长.你可以看现行高中数学教材选修4-1中就有证明,容易理解,也很巧妙.

如果设圆锥的高为po=10cm,过顶点P的截面PAB与底面所成的角为45°,截得圆弧为底面圆周的4分之一,求:

首先你要知道截面是个等腰三角形,△PAB的底边AB中线PC与AB交于点C因为过顶点P的截面PAB与底面所成的角为45°所以∠PCO等于45°,且PO垂直于OC,所以三角形POC是等腰直角三角形,这样可

由曲线 |x|+|y|=1所围成的平面图形的面积为?

是个正方形,边长是根号2,面积是2这个正方形是由x+y=1,x-y=1,-x+y=1,-x-y=1围城的

已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆

分析:先求出圆M的半径,然后根据勾股定理求出求出OM的长,找出二面角的平面角,从而求出ON的长,最后利用垂径定理即可求出圆N的半径,从而求出面积.∵圆M的面积为4π∴圆M的半径为2根据勾股定理可知OM

方程Rez(平方)=1所表示的平面曲线为?为什么?

Z=x+yi,Z^2=x^2-y^2+2xyi.ReZ^2=x^2-y^2=1,为双曲线.

曲线y=x²与x=y²所围平面图形绕x轴旋转而得的旋转体的体积为多少?

先解得曲线y=x²与x=y²的交点为(0,0)(1,1)V=π∫(0,1)(√x)²dx-π∫(x²)²dx=π(x²/2-x^5/5)|(

求函数xy+yz+zx对弧长的曲线积分,弧长为球面x^2+y^2+z^2=a^2与平面x+y+z

因为xy+yz+zx=(1/2)[(x+y+z)^2-(x^2+y^2+z^2)]=-a^2/2所以∫(xy+yz+zx)ds=∫(-a^2/2)ds=(-a^2/2)∫ds=(-a^2/2)*(2π

部分球面面积公式?现在有个球,用一个平面去截这个球.请分析这个截面距球心距离和这个截面所截的两个冠的球面面积的关系.举个

球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底.垂直于截面的直径被截得的一段叫做球冠的高.定理球冠的面积等于截成它的球面上大圆周长与球冠的高的积.即:S球冠=2πRh.推导过程如下:假定球冠最