若极限limx→0(sin8x kx)=4 ,k等于多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:42:32
洛必达显然limln(sin3x)/lnsinx=lim3cot3x/cotx=lim3tanx/tan3x=lim3x/3x(等价无穷小)=1
再问:limx→1,[x/(1-x)-(1/lnx)求极限]再答:再问:limx→0,[(3^x+5^x)/2]^1/x求极限再答:不客气了。
原式=e^[lim(x->0)(lncosx)/x]=e^[lim(x->0)(1/cosx×(-sinx))/1]=e^[lim(x->0)-tanx]=e^0=1
用洛必达法则即可limsin2x/x=lim2cos2x/1=2
解题关键:0/0型,用洛必达法则.满意请采纳!
limx→0[(x-sinx)/x²](0/0型)=limx→0[(1-cosx)/2x](0/0型)=limx→0(1/2)sinx=0.
当x→0+时,(1/x)→+∞;ln(1/x)→+∞;ln(1/x)x=ln(1/x)/(1/x);这是∞比∞型,满足洛必达法则使用条件,用洛必达法则求lim(x→0+)ln(1/x)/(1/x)=l
原式=lim[(1-sin2x/x)/(1+sin5x/x)]=lim[(1-sin2x/(2x)*2)/(1+sin5x/(5x)*5)]=[(1-lim(sin2x/(2x))*2)/(1+lim
(x/sin2x)/x=1-sin2x/x所以原式=1-limx→0sin2x/x=1-limx→0(2*sin2x/2x)=1-2×1=-1
取两个序列:1/x为2kπ+π/2k为整数这样sin(1/x)为1又取1/x为2kπ+3π/2k为整数这样sin(1/x)为-1在上述两个序列中,x都趋于0而收敛于不同的极限,所以sin(1/x)极限
limx/ln(1+x²)[分子分母都趋向于0]x→0=lim1/[2x/1+x²][运用罗毕达法则,分子分母分别各自求导了一次]x→0=lim(1+x²)/2x[分子趋
用罗必达法则,一次就出来了.
利用洛比达法则limx^(1/2)lnx=limlnx/x^(-1/2)=lim(1/x)/(-1/2)x^(-3/2)=-1/2*limx^(1/2)=0
没有极限,左极限是-1,右极限是1,左右极限不等,没有极限.
lim(x→0)(tanx-sinx)/x (这是0/0型,运用洛必达法则)=lim(x→0)(sec^2x-cosx)=0
lim(x→0){(tanx-x)/[xtan(x^2)]}=lim(x→0){(tanx-x)/[x(x^2)]}=lim(x→0){(tanx-x)/(x^3)}(0/0)=lim(x→0){(s
limsin3x/sin5x=lim3x/(5x)=3/5========当x趋于0时,sin3x等价于3x,sin5x等价于5x
取对数ln(sinx)^x=xlnsinx=lnsinx/(1/x)罗比达法则=cosx/sinx/(-1/x²)=-x²cosx/sinx=【-2xcosx+x²sin