若椭圆x²a² y²b²=1的左右交点分别为F1F2,线段F1F2被点B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:07:57
若椭圆x²a² y²b²=1的左右交点分别为F1F2,线段F1F2被点B
已知椭圆C:x^2/8+y^2=1,左焦点F(-2,0),若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点

离心率e=c/a,c=2,2/a=√2/2,a=2√2,b^2=a^2-c^2=4,设A(x1,y1),B(x2,y2),椭圆方程为:x^2/8+y^2/4=1,y=x+m,代入椭圆方程,x^2/8+

已知直线y=x+1和椭圆x^2/m+y^2/m-1(m>1)交于点A,B,若以AB为直径的圆恰好过椭圆的左焦点F,求实数

由于a^2=m,b^2=m-1,所以c=1,这样,直线y=x+1本身就是过左焦点F1(-1,0)和点(0,1)的直线,它与椭圆的两焦点在F1的两侧,以这两点连线为直径的圆怎么能过F1?若改为恰好过右焦

已知椭圆已知椭圆X²/A²+Y²/B²=1的左焦点为F1,O为坐标原点,点P是椭

e=(根号5-1)/2,采用特殊化的方法,令C=1,则e=1/a,下只需要求a,而PF1/PH=e(PH为P到左准线的距离)可得2/(2a^2-2)=1/a,可求得a=(1+根号5)/2,进而求的离心

已知椭圆X^2/a^2+Y^2/b^2=1(a>b>0),圆O:X^2+Y^2=b^2,点A,F分别是椭圆的C的左顶点和

假设存在,A(-a,0),F(-c,0);设P(x,y),因为P在圆上,所以:x²+y²=b²,即:y²=b²-x²;PA/PF为常数,即P

已知椭圆x^2/4+y^2=1,过左焦点F1的直线交椭圆于A、B点,求AB中点N的轨迹方程

设A(x1,y1)、B(x2,y2),N(x,y),则x=(x1+x2)/2,y=(y1+y2)/2.(1)x1^2/4+y1^2=1x2^2/4+y2^2=1相减得到:(x1^2-x2^2)/4+(

已知椭圆x^2/a^2+y^2/b^2=1的离心率为根号2/2,左焦点F(-2,0)若直线y=x+m与椭圆交于不同的两点

离心率e=c/a,c=2,2/a=√2/2,a=2√2,b^2=a^2-c^2=4,设A(x1,y1),B(x2,y2),椭圆方程为:x^2/8+y^2/4=1,y=x+m,代入椭圆方程,x^2/8+

椭圆x²/m+y²/m-1=1(m>1)与直线y=x-1交于A、B两点,若以AB为直径的过椭圆的左焦

由已知:椭圆的左焦点为:(-1,0)设A(x1,y1)B(x2,y2)由于:AF⊥BFy1/(x1+1)*y2/(x2+1)=-1即(x1+1)*(x2+1)+y1*y2=0由于:y1=x1-1y2=

已知椭圆C:x.x/a.a+y.y/b.b=1的左焦点F及点A(0,b),原点O到直线FA的距离为√2/2b 求椭圆C的

F(-c,0),A(0,b),所以直线FA的方程为x/(-c)+y/b=1,即bx-cy+bc=0原点O到直线FA的距离为|bc|/√(b²+c²)=(√2/2)b又b²

如图,已知椭圆x²/a²+y²/b²=1(a>b>0),F1 F2分别为椭圆的左

令F1M=m,F2M=n,焦距为c由题意:m+n=2a4c^2=4a^2-4b^2=m^2+n^2-2mncosΦ=4a^2-2mn-2mncosΦ所以mn=2b^2/(1+cosΦ)S△F1MF2=

已知椭圆X^2/a^2+y^2/b^2=1(a>b>C)的离心率是根号6/3,F是其左焦点,若直线x-根号6y=0与椭圆

这道题首先看FA的向量乘FB的向量=-1,设焦点F为(-c,0),A为(x1,y1),B为(x2,y2)那么根据FA的向量乘FB的向量=-1可得,(x1+c)*(x2+c)+y1*y2=-1同时将直线

椭圆x²/a²+y²/b²=1的左焦点F1(-c,0)A(-a,0)B(0,b)

(a-c)*(b/a)=b/根7所以离心率为6√ ̄7/7再问:能详细点吗?再答:这个我不知道怎么打那些符号呵呵~不好意思啦

高中的一道椭圆题椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)上有2点P和QP,Q在x轴上的射影分别是椭圆的左

F1(-c,0),F2(c,0)k>0显然P在x轴下方x=-cy²/b²=1-c²/a²=(a²-c²)/a²=b²/a

已知斜率为1的直线过椭圆x²/4+y²/3=1的左焦点,交椭圆于点A ,B,求AB长

解椭圆x²/4+y²/3=1即a²=4,b²=3即c=1即左焦点(-1.0)斜率为1的直线过椭圆x²/4+y²/3=1的左焦点的直线方程即y

如图甲所示,已知椭圆的方程为x^2/a^2+y^2/b^2=1(a>b>0),A为椭圆的左顶点

因OABC是平行四边形,所以AB‖OC,则OC方程是y=x与椭圆方程联立,解得C点坐标为(ab/c,ab/c),因BC‖AO,所以B,C纵坐标相同,推出横坐标相反,即B(-ab/c,ab/c),根据∣

已知椭圆X方/2+Y方=1的左焦点为F,左准线为l,l上点A与F交椭圆于点B,若FA向量=3FB向量,则AF向量=?

X方/2+Y方=1a^2=2,b^2=1,则c^2=1即左焦点坐标是F(-1,0),左准线方程是x=-a^2/c=-2.设A坐标是(-2,m),B坐标是(p,q)FA向量=(-1,m),FB向量=(p

已知F1、F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,若AF

因为AF2*F1F2=0所以AF2⊥F1F2AF1+AF2=2aAF1²=AF2²+F1F2²(AF1+AF2)(AF1-AF2)=4c²AF1-AF2=2c&

已知椭圆 x^2/9+y^2=1,过左焦点F作倾斜角为30度的直线交椭圆于A,B两点

说倾角都是指直线在x轴上方部分和x轴正方向的夹角.F(负根号8,0)k=根号3/3,AB={根号(1+k^2)}{(x1+x2)^2-4*x1*x2}x^2/9+y2^2=1y=根号3/3(x+根号8

关于椭圆,圆锥曲线的已知椭圆x^2/a^2+y^2/b^2=1(a>b>0).已知椭圆的离心率为√6/4,A为椭圆的左顶

分析:设直线OQ的斜率为k,则其方程为y=kx,设点Q的坐标为(x0,y0),与椭圆方程联立,x0²=a²b²/(k²a²+b²),根据|A

椭圆x^2/16+y^2/9=1的左、右焦点分别为F1,F2,一条直线经过F1与椭圆交与A,B两点.

(1)AF1+AF2=2aBF1+BF2=2a此为椭圆性质,椭圆上一点到椭圆两焦点的距离之和为其长轴长AF1+BF1=ABAB、BF2、AF2为三角形三边长故三角形周长为4a又a=4故三角形周长为16