若矩阵A满足关系式 A² 2A-5E=0,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:34:42
若矩阵A满足关系式 A² 2A-5E=0,
若对称矩阵A满足A^2=0,证明A=0.

用这个思路证.因为A2=0,且A为对称矩阵(即a(i,j)=a(j,i)),所以矩阵A里面的任一元素满足∑a(i,j)?j,i)=0,所以a(i,j)=0.因为a(i,j)是任意的,所以A=0.得证.

已知矩阵A满足关系式A^2+2A-3E=0,求(A+4E)^-1.

这种问题就可以拼凑的方法解答,一般都可以写成(xA+yB)*(mA+nB)=CE的形式,你就可以用待定系数法求解了,所以这个式子可以变成:(A+4E)*(A-2E)=-5E,下面的结果你应该能够看出来

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.

A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2

证明:设方阵A满足关系式AA-2A-2E=0,证,A及A+2E均可逆,并求出逆矩阵.

由于A²-2A-2E=A(A-2E)-2E=0所以A(A-2E)=2EA(1/2)(A-2E)=E所以A可逆A逆为(1/2)(A-2E)而由于A²-2A-2E=(A-4E)(A+2

线性代数证明题 已知n阶方阵A满足关系式A的平方-3A-2E=0,证明A是可逆矩阵,并求出其可逆矩阵

A²-3A-2E=0=>A(A-3E)=2E=>A[(A-3E)/2]=E所以A是可逆矩阵,且其逆矩阵为(A-3E)/2

已知矩阵A和B满足关系式AB=A+2B,其中A=4 2 3,求B 1 1 0 -1 2 3

因为AB=A+2B所以(A-2E)B=A(A-2E,A)=423100110010-123001r1-4r2,r3+r20-231-40110010033011r3*(1/3),r1+2r3,r2-r

若方阵A满足-3A^2+3A-5E=0,证明A与A-2E可逆并且求它们的逆矩阵

3A(A-E)=-5E,因此A可逆,A^(-1)=(E-A)/5-3(A-2E)(A+E)=11E,因此A-2E可逆,(A-2E)^(-1)=-3(A+E)/11再问:֮ǰ�����ˣ���Ǹ

如果a、b满足关系式a+b=4a

已知等式a+b=4a+2b-5,整理得:a-4a+4+b-2b+1=(a-2)2+(b-1)2=0,可得a=4,b=1,则a+2b=4+2=6.

设三阶矩阵A,B满足ABA=2A+BA,其中A省略.化简求B矩阵

ABA=2A+BAAB=2E+BAB-B=2E(A-E)B=2EB=2(A-E)^-1

若n阶矩阵A满足A^2-A+E=0,证明A为非奇异矩阵

因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A

已知A,B为3阶矩阵,且满足关系式:2A^-1B=B-4E,其中E是3阶单位矩阵

等式2A^-1B=B-4E两边左乘A得2B=AB-4A所以(A-2E)(B-4E)=8E所以A-2E可逆,且(A-2E)^-1=(1/8)(B-4E).因为2B=AB-4A所以A(B-4E)=2B(B

线性代数设n阶矩阵A满足关系式A^2+2A-3E=0则实数K满足什么条件时,A+kE是可逆的,并求它的逆.设A=I-αα

(A+kE)(A+(2-k)E)=A^2+2A+k(2-k)E=(3+2k-k^2)E,因此要求3+2k-k^2不为0,即k不等于3,不等于-1.此时A+kE的逆为(A+(2-k)E)/(3+2k-k

A满足A=A^2 证明A单位矩阵,不可逆矩阵

A(A-I)=0如果A≠I则A不可逆

【线性代数】已知矩阵X与A满足关系式,AX=A+X,求X

AX=A+X(A-E)X=A|021||332|=0+4+6-3-0-6=1≠0|121|∴X=(A-E)^(-1)A[021121][332342]→[121122]----------------

设矩阵A,B满足关系式AB=2(A+B),其中A={3 0 1,1 1 0,0 1 4},求矩阵B

因为AB=A+2B所以(A-2E)B=A(A-E,A)=1013011-10110012014r2-r11013010-1-1-21-1012014r3+r2,r2*(-1)1013010112-11