若矩阵的秩等于0,则该矩阵一定是零矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:49:58
若矩阵的秩等于0,则该矩阵一定是零矩阵
一个矩阵的伴随矩阵的伴随矩阵等于该矩阵么?

一般有(A*)*=|A|^(n-2)A.所以不一定有(A*)*=A.

若A,B是MxN阶矩阵,如何证明A+B矩阵的秩小于等于A矩阵的秩和B矩阵的秩的和

因为A+B的列向量组可由A的列向量组的一个极大无关组与B的列向量组的一个极大无关组合并的向量组线性表示

如果矩阵A乘以它的转置矩阵等于0,则矩阵A等于

数学公式这里不好写,所以就用图片了.

试证明任何一个可逆矩阵的逆矩阵一定是该矩阵的多项式

设f(x)=|xE-A|=x^n+a_{n-1}x^{n-1}+.+a_1x+a_0为矩阵A的特征多项式,因为A可逆,所以a_0不等于0又因为f(A)|=A^n+a_{n-1}A^{n-1}+.+a_

初等矩阵的逆阵是不是一定等于原初等矩阵,谁能证

不一定,所谓的初等矩阵是指由单位矩阵E经过一次初等变换得到的矩阵,共有三种类型:(1)P(i,j),表示单位矩阵E交换i行和j行的元素或者交换i行和j行的元素,它的逆矩阵是它本身,即P(i,j);(2

线性代数中增广矩阵的秩一定大于等于系数矩阵的秩吗

增广矩阵(A,b)比系数矩阵A多一列,所以r(A)≤r(A,b)≤r(A)+1.若A是m×n矩阵,r(A)=n,则非齐次方程组Ax=b(A)A、可能有解;B、一定有唯一解;C、一定无解;D、一定有无穷

一个线代问题,为什么矩阵各行成比例,该矩阵的秩就等于一?

首先,你的结论不正确.正确的说法是“非零矩阵的各行如果成比例,则该矩阵的秩就等于一”因为矩阵非零,所以矩阵存在非零行,任取一非零行,则该行向量线性无关.因为矩阵各行成比例,所以其他行都是所取非零行的倍

为什么任意矩阵的行秩都等于矩阵的列秩?

我懂你意思,你是想说为什么阶梯矩阵最简形式,看起来行秩多于列秩或者相反,其实当你转置矩阵然后化简,你会发现原来阶梯矩阵中看起来多的行秩或者列秩,总会被化简到和矩阵的秩一样,不信可以试试

若矩阵为正定矩阵则它的行列式一定大于零对吗

对的.设二次型f(X1,···),若对于任意的n维非零向量X,有f(X1,···,Xn)=X^TAX>0,则称该二次型和矩阵是正定的.有正定矩阵A,则A的n个特征值均大于0.而|A|等于各个特征值的乘

若矩阵A的平方等于矩阵A,则A的特征值为?

A的特征值或为0或为1.设A的特征值为a,则存在非零向量x有Ax=ax故A^2x=A(ax)=aAx=a^2x由A^2=A得Ax=a^2x于是得ax=a^2xa=a^2解得a=1或a=0,

为什么矩阵A可逆,则矩阵AB的秩等于矩阵B的秩,同样,矩阵B可逆,则矩阵AB的秩等于矩阵A的秩?

A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一

矩阵满秩 怎样证明该矩阵的转置与该矩阵相乘所得矩阵为对称正定矩阵且满秩

(A^TA)^T=A^T(A^T)^T=A^TA所以A^TA为对称矩阵.满秩矩阵的乘积仍满秩,故A^TA满秩对任一非零向量x,由于A满秩,Ax≠0所以(Ax)^T(Ax)>0即x^T(A^TA)x>0

n阶矩阵A的n次方等于单位矩阵,则A相似于对角矩阵

A可对角化的充要条件是A的极小多项式没有重根这里A的极小多项式一定是x^n-1的因子,显然无重根

线性代数 求该矩阵的最简行矩阵

A=[32-1-3-1][2-131-3][705-1-8]行初等变换为[32-1-3-1][6-393-9][21015-3-24]行初等变换为[32-1-3-1][0-7119-7][0-1422

线性代数问题若非零矩阵A为4*3矩阵,AB=0,其中矩阵B=1 5 ,则A的秩等于多少?2 73 9B矩阵没有打好,是一

首先,AB的运算结果仍是一个矩阵,矩阵=0的情况,只有矩阵中每一个元素均为0才会整个矩阵为0.其次,AB=0可以推导出AB'=0(其中B'为B矩阵经过一定初等变换而成),因为初等变换均可以表示为有限个

矩阵与其转置矩阵乘积所得到的矩阵的秩与该矩阵的秩有何关系

如果A是mxn的实矩阵,那么rank(AA^T)=rank(A^TA)=rank(A)如果进一步有rank(A)=n(此时显然一定要有m>=n),那么rank(A^TA)是n阶可逆阵再问:可以简要说明

矩阵A里元素和其伴随矩阵非该元素的代数余子式相乘为什么等于0

ai1Aj1+……+ainAjn=|……………………|←(这是一个行列式)|ai1………………ain|←(第i行)|………………………||ai1………………ain|←(第j行)←(左边式子的含义就是把