若等差数列an的前三项为a-1,a 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:09:59
即对任意n∈N,(a+n)/(a+n-1)≥(a+8)/(a+7)两边同减1:1/(a+n-1)≥1/(a+7)此不等式可分三种情况:(1)a+7≥a+n-1〉0显然n≥8时不成立(2)0〉a+n-1
设公差为d,公比为q,则b2=qb1=q(a1+1)=(a1+d+2),↔2q=3+d,b3=q²b1=q²(a1+1)=(a1+2d+3),↔q²
a1=1,a(n+1)=an/(an+1),取倒数得:1/a(n+1)=(an+1)/(an).即1/a(n+1)=1/an+1,所以{1/an}是首项为1,公差为1的等差数列,1/an=1+(n-1
已知等差数列{an}的前三项依次为a-1,a+1,2a+3,故有2(a+1)=a-1+2a+3,解得a=0,故等差数列{an}的前三项依次为-1,1,3,故数列是以-1为首项,以2为公差的等差数列,故
{bn}是等差数列因为,bn=an^2-a(n-1)^2=[an+a(n-1)][an-a(n-1)]=an+a(n-1)所以,b(n+1)-bn=a(n+1)+an-an-a(n-1)=a(n+1)
a=1,是等差数列,否则,不是.再问:过程?再答:an=a+(n-1),bn=a^2+2a(n-1)+(n-1)^2-a(n+1)^2=a^2+2a(n-1)+(1-a)(n-1)^2,若a=1,bn
1、公差是-1,不是a-12、a(n+1)-an=2(n+1)+1-2n-1=2,{an}是等差数列3、相邻两项只差n不是常数,所以{an}不是等差数列
a(n+1)=an/1+ana(n+1)(1+an)=ana(n+1)+a(n+1)an=an两边除a(n+1)an1/an+1=1/a(n+1)1/a(n+1)-1/an=1所以数列{1/an}为等
1.an=a1+(n-1)d=2+n-1=n+1Sn=(a1+an)*n/2=n(n+3)/22.bn=2^(n+1)bn是以b1=4为首项,2为公比的等比数列,Tn=b1(1-q^n)/(1-q)=
A1=a-1A2=a+2A3=2a+3D=(A3-A1)/(3-1)=A-1=(A2-A1)/(2-1)=3所以D=3A1=2AN=2+(N-1)3=3N-1
S1/a1=1S2/a2-S1/a1=(2+d)/(1+d)-1=d/(1+d)S3/a3-S1/a1==(3+3d)/(1+2d)-1=(2+d)/(1+2d)2*d/(1+d)=(2+d)/(1+
等差数列{an}的前三项为a-1,a+1,2a+3所以:a-1+2a+3=a+1+a+13a+2=2a+2a=0所以前3项是-1,1,3an=-1+2(n-1)=2n-1Sn=-n+n(n-1)=n^
你可以看出公差d=2第一项是A-1所以公式为An=A1+(n-1)d即首项+(n-1)乘以公差d=a-1+(n-1)2=a+2n-3
2a-(a+1)=a+3-2a推导出啊a=2{an}=3,4,5...{an}=a+2(a>=1)
an=2n-3x+1-(x-1)=2x+3-(x+1)x=0d=2an=-1+(n-1)x2=2n-3
a1a2a3成等比数列a2^2=a1a3=a3(a1+d)^2=a1+2da1^2+2a1d+d^2=a1+2d1+2d+d^2=1+2dd^2=0d=0公差不为零的等差数列错题
∵等差数列{an}的前三项分别为a-1,2a+1,a+7,∴2(2a+1)=a-1+a+7,解得a=2.∴a1=2-1=1,a2=2×2+1=5,a3=2+7=9,∴数列an是以1为首项,4为周期的等
由等比设A1=1,A2=Q,A3=Q方由等差得1/(2+Q)+1/(2Q方+Q立)=2/(2Q+Q方)解得Q=1即公比为1,公差为0原式=2012/3
d=2a+1-a=4a+2-(2a+1)a+1=2a+1得出a=0d=1第五项=4
{an}是首项为a公差为1的等差数列,∴数列{an}的通项公式为an=a+n-1,∵bn=1+anan=1+1an=1+1a+n−1.∵bn≥b8∴1+1an≥1+1a8,即1an≥1a8,数列{an