若级数an(x-a)的n次收敛半径r=2 收敛区域(-1,3),则a=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:06:59
这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n
用比较判别法证明.经济数学团队帮你解答.请及时评价.
利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散
可能是你的表达有误,按你的叙述,结论不对.举个例子,an=1/(n^2),显然∑an是收敛的.然而,(an)^n->1,所以∑(an)^n是发散的.再问:请问一下(an)^n->1an既然是一个属于(
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.
an可以看成-(-e/3)^n即看成公比为-e/3的几何级数.当然是收敛的和为=-(e/3)/(1+e/3)=-e/(3+e)再问:答案是e/(3+e)再答:那算错了,没有那个负号是和为=(e/3)/
根据阿贝尔定理,级数在x=-1处收敛,则适合(-1,3)的一切x使该级数绝对收敛,x=2也在其中.
n充分大时有|an|1/2从而|1/1+an|
证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛
讨论x-级数:1+1/2^x+1/3^x+...+1/n^x+.的敛散性,其中x为任意实数.当x>1时,将x-级数按一项,两项,四项,八项,.括在一起,得到:级数(1)1+(1/2^x+1/3^x)+
令t=x-3,级数变为∑t^n/(n-n^3),ρ=lim(n→∞)|a(n+1)/an|=lim(n→∞)|n(1-n^2)/(n+1)((n+1)^2-1)|=lim(n→∞)n/(n+2)=1,
马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+
级数∑(0到无穷)an(x-1)∧n的收敛半径是1,则级数在x=3发散再问:怎么解的?能给个过程吗?再答:没有过程:收敛半径是1|x-1|
收敛根据定义,|an|=|(-1)^nan|再问:Yimoxilong是什么?再答:无穷小反写的3看下书上的定义
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
分情况一,正项级数则收敛,简单证明下设∑An=k则an必然有界an中m项和为∑bm