若级数un满足 则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:40:20
果断收敛啦用比较判别法很容易得出结论的
不确定,可能收敛也可能发散,以un+vn为例,举最简单的例子,设un=vn=1/n,它们都发散,un+vn=2/n也发散,设un=1/n,vn=-1/n,它们也都发散,但un+vn=0收敛.
Un→0,则级数收敛;反之未必,没有人规定数列极限必须是0.比如:1,1+1/1,1+1/2,1+1/3……收敛到1.再问:若Un=1/n,n→∞时,它也是趋于0的。可是它不收敛吧?再答:数列本身是收
其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1
你有问题也可以在这里向我提问:
∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
在证明这个命题之前,我们先介绍一个关于正项级数的性质:若发散的正项级数∑Qn的一般项Qn单调递减且有极限limQn=0,则对于任意的ε>0和正整数n,必存在整数p≥0使得∑Qi>ε(注:此处求和指标中
由 ∑(n>=1)u(n)=s,可得 ∑(n>=1)[u(n)+u(n+1)] =∑(n>=1)u(n)+∑(n>=1)u(n+1) =2s-u(1).再问:(Un+Un+1)=(u1+u
∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始
应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
这是错的.比如Un=1/n
∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1
不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可
级数(un-un-1)收敛于0
∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-
u1=S1=1当n≥2时,Un=Sn-Sn-1=2n/(n+1)-2(n-1)/n=2/(n²+n)
不一定,比如Un=-/n,Vn=1/nWn=1/n²再问:第一个怎么证明再答:0
lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0