若级数un满足 则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:40:20
若级数un满足 则
若级数Un收敛,Un^2是否敛散性如何?

果断收敛啦用比较判别法很容易得出结论的

如果级数Un与级数Vn均发散,则级数(Un±Vn)的敛散性如何?

不确定,可能收敛也可能发散,以un+vn为例,举最简单的例子,设un=vn=1/n,它们都发散,un+vn=2/n也发散,设un=1/n,vn=-1/n,它们也都发散,但un+vn=0收敛.

对于某级数的一般项Un,当n→∞时,若Un→0,则该级数的敛散性如何?反之,若该级数收敛,一般项Un一定趋于0吗?

Un→0,则级数收敛;反之未必,没有人规定数列极限必须是0.比如:1,1+1/1,1+1/2,1+1/3……收敛到1.再问:若Un=1/n,n→∞时,它也是趋于0的。可是它不收敛吧?再答:数列本身是收

证明:若{Un}满足Lim(n→∞)nUn=1,则∞∑(n=1) (-1)^n(Un+Un+1)收敛

其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1

证明:若级数 ∑Un^2及 ∑Vn^2收敛,则 ∑(Un/n)收敛

你有问题也可以在这里向我提问:

证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛

∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

高数证明题证明:若级数∑un条件收敛,对任意a∈R(包括a=±∞),则适当交换级数∑un的项,可使交换后的新级数收敛于a

在证明这个命题之前,我们先介绍一个关于正项级数的性质:若发散的正项级数∑Qn的一般项Qn单调递减且有极限limQn=0,则对于任意的ε>0和正整数n,必存在整数p≥0使得∑Qi>ε(注:此处求和指标中

若级数Un收敛于s 则级数(un+un+1)收敛于

由   ∑(n>=1)u(n)=s,可得   ∑(n>=1)[u(n)+u(n+1)]  =∑(n>=1)u(n)+∑(n>=1)u(n+1)  =2s-u(1).再问:(Un+Un+1)=(u1+u

若级数∑Un收敛于S,级数∑【un+un+1】则收敛于

∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始

设数列{Un}收敛于a,则级数(Un-U(n-1))=?)

应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676

若Un的级数收敛,则1/Un的级数是收敛还是发散

是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.

级数Un^2收敛,证明Un收敛

这是错的.比如Un=1/n

设级数∑(n=1)Un收敛,且∑Un=u,则级数∑(Un+U(n+1))=?

∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1

若limun=0 则级数∑un 收敛么

不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可

设数列{un}收敛于a,则级数(un-u(n-1))=?)

∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-

若级数∑un的前n项部分和Sn=2n/(n+1),则un=_______ 在线等,急求

u1=S1=1当n≥2时,Un=Sn-Sn-1=2n/(n+1)-2(n-1)/n=2/(n²+n)

设数列un收敛于S,则级数un+1-un收敛于

lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0