mn是圆o的直径,mn=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:17:53
mn是圆o的直径,mn=2
MN是圆O的直径,AB垂直MN于B,EC垂直OA交圆于C,CD垂直MN于D,连结ED.

有图吗?没图可能要分好多情况了过E做MN垂线交MN与P,EP/AB=OE/OA=OE/OC,由于∠CEO和∠CDO为直角可知CDOE共圆,∴∠OCE=∠EDP,所以OE/OC=EP/ED,代入第一个等

AB望⊙O的直径,MN为圆内一条弦,若AB=10,MN=8,求AB两点到直线MN的距离之和

不一样图一:AB两点到直线MN的距离之和=AB=10图二:AB两点到直线MN的距离之和=6图三:AB两点到直线MN的距离之和>6但

如图,AB,CD是半径为5的圆O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN,CD⊥MN,P为EF上任意一点

连结BC,BC与EF的交点为P时,PA+PC最短连结OA,OC,由勾股定理得OE=3,OF=4∴EF=7∵AB‖CD∴BE/CF=EP/PF4/3=EP/PFEP+PF=7∴EP=4,PF=3∴BP=

如图,MN是⊙O的直径,MN=2,∠AMN=30°,B点是弧AN的中点,P是直径MN上的动点,则PA+PB的最小值为(

作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.此时PA+PB最小,且等于AC的长.连接OA,OC,根据题意得弧AN的度数是60°,则弧BN的度数是30°,根据垂径定理得弧CN的

如图,AB是圆O的直径,且AB=10,弦MN的长为8,若弦MN的两端点在圆上滑动时,始终与AB相交,记点A,B到MN的

h1+h2=圆心O到MN的距离的2倍,利用垂径定理,得到这个距离是3,则h1+h2=6再问:“h1+h2=圆心O到MN的距离的2倍”这是为什么?再答:可以将弦MN平移到其一个顶点与点A(或者B)重合。

AB是圆O的直径 ,直线MN与圆O相交于点E,AD垂直于MN 求角BAF=角DAF

我想你是打错了吧应该是证明角BAE=角DAF吧连接BE因为直径,所以角BEA等于90度所以所以角EBA+角BAE=90度角AFD=角BAE角AFD+角DAF=90度所以角BAE=角DAF

已知EF是圆O的直径,EF=10CM,弦MN=8CM,求E、F两点到直线MN的距离之和

所求即为求圆心到MN的距离的两倍~(中位线)然后过O作MN的垂线,垂足为P连接OM~根据勾股定理即得OM^2=OP^2+PM^2求出OP,再乘2就可以了~

(2013•黄浦区二模)如图,MN是⊙O的直径,点A是弧MN的中点,⊙O的弦AB交直径MN于点C,且∠ACO=2∠CAO

(1)∵MN是⊙O的直径,点A是弧MN的中点,∴∠AOM=14×360°=90°,∴∠ACO+∠CAO=90°,∵∠ACO=2∠CAO,∴3∠CAO=90°,解得∠CAO=30°;(2)过点O作OD⊥

如图所示,AB,CD是半径为5的圆O的两条弦,AB=8,CD=6,MN是直径,AB垂直于MN于点E,CD垂直于MN于点F

此答案为正连结BC,BC与EF的交点为P时,PA+PC最短连结OA,OC,由勾股定理得OE=3,OF=4∴EF=7∵AB‖CD∴BE/CF=EP/PF4/3=EP/PFEP+PF=7∴EP=4,PF=

如图1和图2,mn是圆o的直径,炫ab,cd相交于mn上的一点p,∠apm=∠cpm

理由是:过O作OE⊥AB于E,OF⊥CD于F,连接OB、OD,\x0d∵∠APM=∠CPM,∠APM=∠BPN,∠CPM=∠DPN,\x0d∴∠BPN=∠DPN,\x0d∵OE⊥AB,OF⊥CD,\x

如图,MN是圆O的直径,MN=2,点A在圆O上,弧AN的度数为60,点B为弧AN的中点,P是直径MN上的一个动点,点PA

由题意可知,角AON=60度,角BON=30度.以MN为对称轴,B的对称点B',连接BB',如图,连接AB',B'O.P是直径MN上的一个动点,则点PA+PB的最小值就

MN是圆O的直径,MN=2,点A在圆O上,角AMN=30度,B是弧AN的中点,P是直径MN上的一动点,求PA+PB的最小

作关A关于直径MN的对称点C,则PA=PC所以PA+PB=PC+PB由于两点之间线段最短,所以B、P、C共线时PA+PB达到最小值.

如图,AB,CD是半径为5的圆O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN,CD⊥MN,P为EF上任意一点,

7倍根号2再问:谢谢,可否讲解一下呢?再答:连接OA,OC.作CG垂直于AB,用勾股定理算得EF=OE=OF=7,CG=7,在直角三角形CGB中BC=7倍根号2再答:对了!CE=CF=3!!!再答:懂

AB是圆O的直径,D是圆上一点,AD弧=DC弧,连接AC,过点D作弦AC的平行线MN. 1、求证MN时圆O的切线.2、已

(1)连接DO,与AC交于点E,因为角B为弧ADC的圆周角,角AOD为弧AD对的圆心角,又弧AD=弧DC,所以角B=角AOD,因为角B+角BAC=角AOD+角BAC=90度,所以角OEA=90度,所以

如图,MN是圆O的直径,弦AB ,CD相交于MN上的一点P,∠APM=∠CPM

AB=CD,理由是:过O作OE⊥AB于E,OF⊥CD于F,连接OB、OD,∵∠APM=∠CPM,∠APM=∠BPN,∠CPM=∠DPN,∴∠BPN=∠DPN,∵OE⊥AB,OF⊥CD,∴OE=OF,在

MN是圆O的直径,AB,CD是弦,MN垂直AB,CD//AB.求证:MN平分CD

连接AO,BO,CO,DO.等腰三角形ABO,由等腰三角形三线合一知MN过圆心O.又MN垂直AB,AB平行CD所以MN垂直CD.等腰三角形CDO,由等腰三角形三线合一知MN就是CD的垂直平分线.

如图,MN是半圆O的直径,K是MN延长线上一点,直线

35度连接PN,设角NPQ=X,角NMQ=X(同弧所对圆周角)角K+X+90+40+X=180(90是因为直径对的圆周角,180是三角形KPM的内角和)求得X=15,所以角PMN=55,余角PNM=3