菱形ABCD,P,E,F是动点,PA=8,求PE PF的值.PA的最大值和最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:51:53
建立空间坐标系A-XYZ,AE为x轴,AD为y轴,AP是z轴
1.是垂直的∵PA⊥面ABCD,AE∈面ABCD∴PA⊥AE∵ABCD是菱形,∠ABC=60°∴△ABC是正三角形又E是BC中点∴AE⊥BC又AD∥BC∴AE⊥AD∵PA∩AD=面PAD∴AE⊥面PA
这种题建系做不就行了么连接AE,可证AE垂直BC,以AE、AD、AP为所在直线分别为XYZ轴建立坐标系不防设AB=2,op向量设成(0,0,c)根据角度关系,标出坐标.最后可证明AF向量与PD向量乘积
P点位置未确定,在底面ABCD作AH⊥BC,设菱形边长为1,△ABC是正△,设PF/PD=k,以A为原点,AH为X轴,AD为Y轴,AP为Z轴建立空间直角坐标系,A(0,0,0),B(√3/2,-1/2
设菱形边长为aEP=asin70°EF=asin35°FP²=(asin70°)²+(asin35°)²-2a²sin70°sin35°cos35°=(asin
(1)证明:∵E为BC的中点,∴AE∈平面ABCD,∵PA⊥平面ABCD,∴平面PAD⊥平面ABCD,∴PD⊥AE.
看这个在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'提示:棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.又∵PA⊥ABCD.∴PA⊥EA∴EA⊥面PAC
延长PF交AB的延长线于点G.可以证明△BGF≌△CPF∴F为PG中点又∵由题可知,∠BEP为90°∴EF=1/2*PG∵PF=1/2*PG∴EF=PF∴∠FEP=∠EPF∵∠BEP=∠EPC=90°
可以试着建立空间坐标系然后找出最大角再求二面角E-AF-C的余弦值.利用PA⊥平面ABCD
证明:1.取PA的中点G,连结FG,DG.∵PF=FB,∴FG是△PAB的中位线,FG//AB,FG=AB/2.∵ABCD是菱形,∴AB//CD,∴DE//FG.又∵DE=CD/2=AB/2,∴DE=
\x0d\x0d\x0d\x0d在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'\x0d提示:\x0d棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.\x0
如图;AE⊥BC(三合一),∴EA⊥PAD.作AH⊥PD. 则EH⊥PD.此时EH与平面PAD所成角最大,设AB=2,则AE=√3, √3/AH=(√6)/2. AH=√
延长EP交BC于H点.∵ABCD是菱形.∴AD//BC,BC=AB=5.∠ACB=∠ACD.∴∠CHP=∠DEP=90°∴⊿CHP≌⊿CFP.∴PH=PF∵EH=S菱形ABCD÷BC=24/5∴PE+
PE=PA*sin∠PAEPF=PC*sin∠PCF=PCsin∠PAEPE+PF=ACsin∠PAES(ABCD)=2*S△ABC=2*(AB*ACsin∠PAE)/2=5*(PE+PF)=24PE
1、连接AC,得到ABC为一个等边三角形.所以,AE垂直BC,即AE垂直AD,又AE垂直PA,所以AE垂直PD.2、由于AE垂直PAD,任取一点H,交角正切值都是AE/AH,AE是一定值,所以取最大正
因为PA⊥AD,AE⊥AD,因此向量AD即平面PAE的法向量,而(0,1,0)是与向量AD共线的单位向量.再问:D��������020Ϊʲô����������020再答:�����ǣ�0��2��
(1)因为四边形ABCD是菱形,所以∠ADP=∠CDP,AD=CD所以三角形ADP与三角形CDP全等所以∠DCP=∠DAP(2)同(1)理可得三角形ABP与三角形CBP全等由菱形ABCD可得∠ABP=
延长PF交AB的延长线于点G.可以证明△BGF≌△CPF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,
延长PF交AB的延长线于点G.△BGF≌△CPF∴F为PG中点又∵由题可知,∠BEP为90°∴EF=1/2*PG∴∠FEP=∠EPF∵∠BEP=∠EPC=90°∴∠BEF=∠FPC∴BE=BF,∠BE