菱形ABCD,P,E,F是动点,PA=8,求PE PF的值.PA的最大值和最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:51:53
菱形ABCD,P,E,F是动点,PA=8,求PE PF的值.PA的最大值和最小值
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中

1.是垂直的∵PA⊥面ABCD,AE∈面ABCD∴PA⊥AE∵ABCD是菱形,∠ABC=60°∴△ABC是正三角形又E是BC中点∴AE⊥BC又AD∥BC∴AE⊥AD∵PA∩AD=面PAD∴AE⊥面PA

已知四棱锥P-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60度,E,F分别是BC,PC的中点,证明A

这种题建系做不就行了么连接AE,可证AE垂直BC,以AE、AD、AP为所在直线分别为XYZ轴建立坐标系不防设AB=2,op向量设成(0,0,c)根据角度关系,标出坐标.最后可证明AF向量与PD向量乘积

已知四棱锥P-ABCD,底面ABCD为菱形PA垂直平面ABCD角ABC=60度,点E,G为CD,PC中点F在PD上,PF

P点位置未确定,在底面ABCD作AH⊥BC,设菱形边长为1,△ABC是正△,设PF/PD=k,以A为原点,AH为X轴,AD为Y轴,AP为Z轴建立空间直角坐标系,A(0,0,0),B(√3/2,-1/2

再菱形ABCD中,角A=110度,E,F分别是边AB和BC的中点,EP垂直CD于点P,角FPC=[ ]

设菱形边长为aEP=asin70°EF=asin35°FP²=(asin70°)²+(asin35°)²-2a²sin70°sin35°cos35°=(asin

空间角已知,四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别为BC、PC的中点,

(1)证明:∵E为BC的中点,∴AE∈平面ABCD,∵PA⊥平面ABCD,∴平面PAD⊥平面ABCD,∴PD⊥AE.

已知四棱锥p-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60°,E.F分别是BC.PC的中点.(1)

看这个在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'提示:棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.又∵PA⊥ABCD.∴PA⊥EA∴EA⊥面PAC

如图,在菱形ABCD,角A=110° E F 分别是AB BC的中点 EP⊥CD于点P 则∠EPC为?

延长PF交AB的延长线于点G.可以证明△BGF≌△CPF∴F为PG中点又∵由题可知,∠BEP为90°∴EF=1/2*PG∵PF=1/2*PG∴EF=PF∴∠FEP=∠EPF∵∠BEP=∠EPC=90°

立体几何已知四棱锥P-ABCD,地面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.

可以试着建立空间坐标系然后找出最大角再求二面角E-AF-C的余弦值.利用PA⊥平面ABCD

已知四棱锥P-ABCD的底面是菱形,PA⊥底面ABCD,点E.F分别是CD,和PB的中点,求证EF∥平面PAD

证明:1.取PA的中点G,连结FG,DG.∵PF=FB,∴FG是△PAB的中位线,FG//AB,FG=AB/2.∵ABCD是菱形,∴AB//CD,∴DE//FG.又∵DE=CD/2=AB/2,∴DE=

已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点

\x0d\x0d\x0d\x0d在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'\x0d提示:\x0d棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.\x0

高中立体几何题已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的

如图;AE⊥BC(三合一),∴EA⊥PAD.作AH⊥PD. 则EH⊥PD.此时EH与平面PAD所成角最大,设AB=2,则AE=√3, √3/AH=(√6)/2. AH=√

在菱形ABCD中,点p是对角线AC上一点,PE⊥A于点E,PE⊥CD于点F,若AB=5,菱形ABCD的面积为24,求PE

延长EP交BC于H点.∵ABCD是菱形.∴AD//BC,BC=AB=5.∠ACB=∠ACD.∴∠CHP=∠DEP=90°∴⊿CHP≌⊿CFP.∴PH=PF∵EH=S菱形ABCD÷BC=24/5∴PE+

在菱形ABCD中,点P是对角线AC上一点,PE⊥AD于点E,PF⊥CD于F,若AB=5,菱形ABCD的面积为24,求PE

PE=PA*sin∠PAEPF=PC*sin∠PCF=PCsin∠PAEPE+PF=ACsin∠PAES(ABCD)=2*S△ABC=2*(AB*ACsin∠PAE)/2=5*(PE+PF)=24PE

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA垂直面ABCD,角ABC=60度,E.F分别是BC.PC的中点

1、连接AC,得到ABC为一个等边三角形.所以,AE垂直BC,即AE垂直AD,又AE垂直PA,所以AE垂直PD.2、由于AE垂直PAD,任取一点H,交角正切值都是AE/AH,AE是一定值,所以取最大正

已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,AB=PA=2,E、F分别为BC、P

因为PA⊥AD,AE⊥AD,因此向量AD即平面PAE的法向量,而(0,1,0)是与向量AD共线的单位向量.再问:D��������020Ϊʲô����������020再答:�����ǣ�0��2��

如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.

(1)因为四边形ABCD是菱形,所以∠ADP=∠CDP,AD=CD所以三角形ADP与三角形CDP全等所以∠DCP=∠DAP(2)同(1)理可得三角形ABP与三角形CBP全等由菱形ABCD可得∠ABP=

在菱形ABCD中,∠A等于110度,E ,F分别为AB和BC中点,EP⊥CD于点P,

延长PF交AB的延长线于点G.可以证明△BGF≌△CPF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,

菱形ABCD中,∠A=110°,E、F分别是AB和BC的中点,EP⊥CD于点P,求∠FPC

延长PF交AB的延长线于点G.△BGF≌△CPF∴F为PG中点又∵由题可知,∠BEP为90°∴EF=1/2*PG∴∠FEP=∠EPF∵∠BEP=∠EPC=90°∴∠BEF=∠FPC∴BE=BF,∠BE