菱形ABCD的边长为6 角DAB=60度 对角线交于O点,设PA=X
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:12:49
连接BD,则由已知条件可知△ABD是等边三角形,所以BG⊥AD,再由于两个面垂直,所以很容易证明BG⊥平面PAD再连接PA,由于△PAD是正三角形,G是中点,所以AD⊥PG,由于△ABD是正三角形,G
设CF=X ,AE=M-X三角形BEF的面积(f(x))=菱形的面积-三角形AEB-三角形bfc-三角形EDF三角形AEB=4分之根号3乘(m-x)的平方BFC=4分之根号3乘mxEDF=4
根据三角函数,依次求出几个边长值,找找规律就行了第n个菱形边长为=(√3)^(n-1)第2010个菱形的边长为=(√3)^2009
第一个菱形的边长为a1=1,第二个的边长为a2=1*2√3/2=√3第三个为a3=1*(√3)^2,所以第n个菱形的边长为an=1*(√3)^(n-1)=3^(n-1)/2
第一个菱形ACC1D1面积是原始菱形ABCD面积的3倍;以后每个都一样,面积都是上一个菱形的3倍,因此第N个菱形面积为原始菱形ABCD面积的3^N倍,原始菱形ABCD面积为(√3)/4,故第N个菱形面
两种情况:1,AC在y轴,DB在x轴.角DAC=30°,因为AD=2,所以DO=1,AO=根号3即A(0,正负根号3),B(正负1,0)2,AC在x轴,DB在y轴,同理A(正负1,0)B(0,正负根号
1/过P,向AD作PF⊥AD于F,连接BF,BD由于△PAD是正三角形,所以F为AD终点,又四边形ABCD为菱形,角DAB=60°,则△ABD为正三角形,即BF⊥ADPFB共面,可得AD垂直于面PFB
AC=√3AB第n个菱形边长为(√3)^(n-1)再答:第一个菱形的对角线长=1×COS30°×2=根号3是第二个菱形的边长第二个菱形的对角线长=根号3×COS30°×2=(根号3)^2是第三个菱形的
分析:这个题,其实不算难题吧,只是有一个条件是迷惑人的:"∠EAB=α"实际上这这题与这个无关,真正有用的是"∠CEF=90°"也就是垂直关系如图,看到这样的三角形,剩下的东西勾股定理就能解决了~(注
选A连接棱形的那条较短的对角线,易证较短的那条对角线的长度等于棱形的边长.可以看出正六边形的边长是棱形边长的三分之一.可以求得图形的边长为20cm.图形的面积:可以先求出图形一半的面积.在棱形较短的对
若对角线AC=12cm,如图甲所示.∵四边形ABCD是菱形∴∠DAC=∠BAC=12∠DAB∴AB=BC=CD=AD,AD∥BC∴∠DAC=∠ACB,∠DAB+∠B=180°∵∠DAB=120°∴∠D
1.△agd全等△aeb(sas)2.连接cf过点d作do⊥cf∠adc=∠fad=120°∠fdc=120°cd=df∠ocd=∠dfo=30°勾股定理求co则cf可知3,过点a作ah平行ce交fe
整个过程中,从A--C是可以不考虑的,因为是必经之路.我们来考虑C--M--B的过程:由已知条件可知:OB=3,OC=3根3设M为(X,0),BM=根(9+X^2),CM=3根3-X因为在BM上速度减
根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律根据规律不难求得第n个菱形的边长.因为∠DAB=60°,且菱形的对角线互相垂直平分,且每一条对角线平分一组对角,根据勾股定理可得A
/>连接BD则AC垂直平分BD则点D与点B关于AC对称连接DE,交AC于点F则F就是所求的点∵FB=FD∴EF+FB=DE∵E是AB中点,AB=AD,∠DAB=60°∴△ABD是等边三角形则DE⊥AB
取AD的中点为P,则EF+BF=PF+BF,所以BP为最短矩离,三角形ABD为正三角形,所以BP=3根号3
如图:根据对称性可得:B与D关于直线AC对称,即AC上任意一点到B的距离等于到D的距离.要使EF+BF之和最小,那么必须使得D、F、E在同一条直线上,于是连接ED交AC 于F,则F为所求的点
连接BD,交AC于O,设AB=2x,则AO=AC/2=(3√3)/2在直角三角形AOB中∵∠BAO=∠DAB/2=30°∴BO=AB/2=x根据勾股定理:AB²-BO²=AO
一条对角线是AB还是BD,两种情况?再问:应该是两种吧再答:如图,字迹潦草,凑合。