行列式A等于A平方说明什么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:22:01
因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.
若A可逆,设A的逆矩阵为A^(-1)则根据逆矩阵定义有:AA^(-1)=A^(-1)A=E∵|AB|=|A||B|∴|A||A^(-1)|=|A^(-1)||A|=|E|=1从而|A^(-1)|=1/
是的1因为A*A仍为方阵,故行列式存在2由运算法则可知det(AB)=det(A)*det(B)所以可知你的问题是成立的
“相似”的意思我在矩阵里看到的:对于同阶方阵A、B,若存在/P/(行列式P)不等于0使P^(-1)AP=B,则称A与B相似,记为AB
A*B的行列式等于A的行列式*B的行列式吗注意条件:A、B是n阶矩阵.则A*B的行列式等于A的行列式*B的行列式否则A*B的行列式有意义,但A的行列式或B的行列式可能无意义.
(a-b)的平方=a的平方-2ab+b的平方
首先要保证a*b是一个方阵,这需要a的行(列)数=b的列(行)数当a和b都是同阶方阵的时候,命题成立.当a和b不同阶的时候,如果a的列多余a的行,那么a*b行列式为零如果a的列少于a的行,设a的列数为
AB的逆=B逆*A逆两边同取det由任意2个方阵C,D有det(CD)=det(C)*det(D)成立得出结果成立当然既然是det是数就可以有乘法交换律成立了.另一种理解(如果你暂时不承认上述那个CD
知识点:|A*|=|A|^(n-1),其中n是A的阶.所以|A*|=|A根据伴随矩阵的性质可有:AA*=|A|E(E为单位矩阵)则两边求行列式有:
是的这个证明一般的高等代数书上应该都有的如果没有书可以看看这个视频
说实话我没见过这样形式的行列式,但是我肯定||A||并不是代表A的行列式的行列式,行列式已经是一个值了,不能再求其行列式了,它的意义应该是||A|E|,即单位矩阵乘|A|的行列式,|A|E表示的矩阵是
我这里有个证明:我空间相册里的,有好多线性代数题目,你可以去看看.公开的,不是好友也可以看再问:证明A的行列式等于先将A转置后再求行列式再答:这个首先要看你教材中行列式是如何定义的定义方法一般有两种1
a>=2或者a=0
一个矩阵的行列式就是一个数值,一个数值的行列式就是他自己.
|AA^T|=|A||A^T|=|A||A|=|A|^2
应该是|A*|=|A|^(n-1)讨论一下,若r(A)=n,则AA*=|A|E,故|A||A*|=|A|^n,即|A*|=|A|^(n-1).若r(A)
n阶方阵的行列式丨A丨≠0说明矩阵A各行、各列线性无关,A的秩等于n.都是A具有的“性质”,看你挑一个了.再问:那AX=B一定有唯一解了?再答:那就不一定了!还需要一个条件:B的秩等于A的秩。矩阵方程
|AA^T|=|A||A^T|=|A||A|=|A|^2再问:不是AAT的行列式,就是A乘以AT,我问的是为什么AAT=|A|^2再答:这不会.AA^T是一个矩阵,|A|^2是一个数肯定是AA^T的行
这个式子有问题,左边代表的是一个非负数|A|的绝对值,所以结果还是|A|,而右边是矩阵A^n的行列式,等于|A|^n,这两个结果未必相等啊.如果把左边的|A|换成|A|乘以单位矩阵|A|E,且A是n阶
定理5.2设AB均为n阶方阵,则A与B的乘积矩阵的行列式等于A的行列式与B的行列式的乘积正确,但ab为n阶矩阵a+b的行列式等于a的行列式加上b的行列式吗这个是不成立的