行列式E(2(3))diag(1.2.3.-1)E(1.2)怎么算

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:13:44
行列式E(2(3))diag(1.2.3.-1)E(1.2)怎么算
已知矩阵A的伴随阵A*=diag(1,1,1,8),且ABA^(-1)=BA^(-1)+3E,求B

n=4,det(A*)=|A|^(n-1)=|A|^3=8,|A|=2(A*)A=A(A*)=|A|E=2E原等式右乘A得AB=B+3AA*左乘上式,(A*)AB=(A*)B+3(A*)A2B=(A*

设A的伴随矩阵A*=diag(1,1,1,-8),且 ABA^(-1)=BA^(-1)+3E,求B.

由已知ABA^-1=BA^-1+3E等式两边左乘A*,右乘A,得|A|B=A*B+3|A|E因为|A*|=8=|A|^3所以|A|=2所以2B=A*B+6E所以(2E-A*)B=6E所以B=6(2E-

已知矩阵A的伴随阵A*=diag(1,1,1,8),且ABA^-1=BA^-1 +3E.求B.

ABA^-1=BA^-1+3EAB=B+3A(A-E)B=3AB=3A(A-E)^-1|A|^(4-1)=|A*||A|=2A=diag(2,2,2,1/4)(A-E)^-1=diag(1,1,1,-

已知三阶矩阵A使得行列式|2A+3E|=|3A+4E|=|4A+5E=0,求行列式|A|

具体的解法在我空间相册里点下面的链接直接进去http://hi.baidu.com/%CE%C4%CF%C9%C1%E9%B6%F9/album/item/9d6b5e191b4f9045dab4bd

diag(diag(A))是什么意思

diag是(提取对角元素)还有线性代数函数有关的:det(求行列式值),inv(矩阵的求逆),qr(二次余数分解),svd(奇异值分解),bdiag(求广义本征值),spec(求本征值),schur(

1.A为三阶矩阵,满足E-A的行列式等于0,E+A的行列式等于0,3E-2A的行列式等于0求A的特征值和A的行列式.2

由于|E-A|=0,|E+A|=0,|3E-2A|=0,故可知1,-1,3/2,均为A的特征值,由于A为3阶矩阵,故A最多有3个互不相同的特征值,因此A的特征值即为1,-1,3/2,由特征值和矩阵行列

diag(1,2,3)什么意思?

表示一个三阶对角矩阵,其主对角线上的元素为1,2,3,其它元素都是零

已知矩阵A的伴随矩阵A^*=diag(1,1,1,8),且ABA^-1=ba^-1+3E,求B.

由已知ABA^-1=BA^-1+3E等式两边左乘A*,右乘A,得|A|B=A*B+3|A|E因为|A*|=8=|A|^3所以|A|=2所以2B=A*B+6E所以(2E-A*)B=6E所以B=6(2E-

设三阶方阵A的三个特征值为1,2,3,则A+E的行列式=?

您好!A的三个特征向量互不相同,所以A可对角化,存在可逆矩阵P使得A=P*diag{1,2,3}*P^(-1).所以A+E=P*diag{1,2,3}*P^(-1)+P*P^(-1)=P*(diag{

设A=diag(1,-2,1)

由已知A*BA=2BA-8E等式两边左乘A,右乘A^-1得|A|B=2AB-8E又因为|A|=1*(-2)*1=-2所以-2B=2AB-8E所以(2A+2E)B=8E所以B=4(A+E)^-1=4di

已知A相似于对角阵diag(1 2 3 4),则A*特征值为?

A相似于对角阵diag(1234),所以A得特征值是1,2,3,4|A|=1*2*3*4=24AA*=|A|EA*=|A|A^(-1)=24A^(-1)所以A*的特征值是24*1^(-1)24*2^(

设三阶方阵A相似于矩阵diag(-1,1,2),求|A*A+E|

-1. 用性质计算.经济数学团队帮你解答.请及时评价.

矩阵A=diag(1,-2,1),A* BA=2BA-8E,求B

等式两边同时左乘A:|A|BA=2ABA-8A等式两边同时右乘A的逆:|A|B=2AB-8E这样解出B=diag(2,-4,2)

请问 线性代数中A=diag(1,2,3)中的diag是什么意思?

diag是(提取对角元素)还有线性代数函数有关的:det(求行列式值),inv(矩阵的求逆),qr(二次余数分解),svd(奇异值分解),bdiag(求广义本征值),spec(求本征值),schur(

设三阶方阵A相似于矩阵diag(-1,1,2),求|A的平方+E|

行列式等于特征值的乘积.经济数学团队帮你解答.请及时评价.

三阶矩阵A特征值1,-1,2.求行列式|A*+3A-2E|

三阶矩阵A特征值1,-1,2则|A|=-2从而A*+3A-2E的特征值为-2/1+3×1-2=-1-2/-1-3×1-2=-3-2/2+3×2-2=3所以|A*+3A-2E|=9再问:请问为何A*特征

行列式相加很晕啊,1 2 3 9 8 7行列式A=a b c 行列式B=a b cd e f d e f1+9 2+8

举个二阶的例子吧A=abcdB=xyzw|A+B|=a+xb+yz+cd+w=ababxyxycd+zw+zw+cd只能拆成这样来加.高维的时候更麻烦.所幸我们一般可以用∑号下面的指标来表示一般的项.

设A=diag(1,-2,1),A*BA=2BA-8E,求B

解由A*BA=2BA-8E得(A*-2E)BA=-8E,B=-8(A*-2E)-1A-1=-8[A(A*-2E)]-1=-8(AA*-2A)-1=-8(|A|E-2A)-1=-8(-2E-2A)-1=

线性代数矩阵问题设矩阵A=diag(1,-2,1),A* BA=2BA-8E,求BA* 是伴随矩阵

A*=A的行列式乘以A的逆所以A*BA=2BA-8E可以转化为A的行列式乘以A的逆BA=2BA-8E,同时左乘A,右乘A的逆,可以得出:8E=(2A-A的行列式)B,将A=diag(1,-2,1),其

线性代数题!要详解 设A是3阶实方阵,A+2E,A-E,2A-E均不可逆,则行列式A^2+E=

因为A+2E,A-E,2A-E均不可逆所以A的特征值为:-2,1,1/2所以A²的特征值为:4,1,1/4A²+E的特征值为:5,2,5/4所以|A²+E|=5×2×(5