行列式不等于0说明什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:16:36
行列式不等于0说明什么
如果矩阵A的行列式乘以矩阵B的行列式不等于0,能不能说明A和B的行列式都不等于零?

|A|,|B|是两个数,两个数的积不为0,这两个数当然都不为0所以|A|,|B|都不为0

n阶矩阵A行列式为0,存在一个代数余子式子不等于0

行列式为0故r(A)一个代数余子式非0,故所在的n-1行线性无关,r(A)≥n-1.即有r(A)=n-1.再问:不是这样,我刚才知道,是利用k阶子式的知识再答:你是说下面这个结论?方阵A的秩=最大的k

逆矩阵的行列式等不等于行列式的倒数?为什么?

等于.因为AB=BA=E(单位阵),B是A的逆矩阵.所以|AB|=|BA|=1.当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,有|B|=1/|A|.

a并b不等于空集,说明什么

说明2个集合不同时为空集.注意:是不同时,可以其中一个为空集A交B不为空集说明AB均不是空集,一个都不是!还有问题追问

线性代数:增广矩阵的秩的行列式等于0说明了什么?

系数矩阵是3×2矩阵,前两行线性无关,所以系数矩阵的秩是2.增广矩阵是3×3矩阵,其秩大于等于系数矩阵的秩,小于等于3.方程组有解,则增广矩阵的秩也是2,所以增广矩阵的行列式等于0.行列式等于4k-1

怎么证明一个矩阵可逆的充要条件是其行列式不等于0

因为|AB|=|A||B|啊,书上的性质,同济五版第四十页.

齐次线性方程组只有零解,能说明该系数行列式D不等于0吗?

可以的只要系数组成的矩阵是一个方阵,那么系数行列式的值不为0

老师 矩阵的行列式等于和不等于0能代表什么?

这个成立是充要条件|A|=0的充分必要条件A不可逆(又称奇异)A的列(行)向量组线性相关R(A)

行列式不等于0可以怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

矩阵满秩的条件是否是该方阵的行列式不等于0?

如果是方阵,那么行列式不等于0是满秩的.对于不管是不是方阵的情况,当写成行向量或列向量时,如果行(列)向量线性无关,那么满秩.当作初等行列变换后能化为单位阵,那么也满秩.还有许多条件的,可以看书呀

线性无关等价于gram行列式不等于0?怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

如果一个二元一次方程不等于零,能说明什么?△

ax^2+bx+c≠0能说明1、方程无解2、△

证明题:当b不等于0时,左边三阶行列式等于右边

证明:左边=|a11*b*b^(-1)a12*b^(-1)a13*b^(-2)|a21*ba22a23*b(-1)a31*b^2a32*ba33*b*b^(-1)=b*b*b^(-1)*b^(-1)*

为什么行列式不等于零 矩阵可逆?

求逆公式是什么?1/{A}*{A}的伴随矩阵,你觉得什么东西分母可以等于0的呢?

线性代数,行列式等于零或不等于零,跟线性相关和线性无关有什么关系

齐次线性方程AX=0(1)可以看做关于A(m*n)的列向量a1,a2,……,an的方程ajxj=0(j=1,2,……,n)(2)列向量aj=(a1j,a2j,……,amj)^T(1)和(2)是同解方程

为什么证明线性无关只要其对应的行列式不等于0

不等于0,说明齐次线性方程组只有零解,说明只有全为零的数才能使得他们的线性组合等于0,因此线性无关

已知n阶方阵的行列式丨A丨≠0说明矩阵A什么性质

n阶方阵的行列式丨A丨≠0说明矩阵A各行、各列线性无关,A的秩等于n.都是A具有的“性质”,看你挑一个了.再问:那AX=B一定有唯一解了?再答:那就不一定了!还需要一个条件:B的秩等于A的秩。矩阵方程

已知3阶方阵A的行列式|A|=a不等于0,则行列式|-2A|=

|-2A|=(-2)^3*a=-8a再问:矩阵A=211160为()定矩阵。103

n个n维向量线性无关 则行列式不等于0 为什么?

n个n维向量线性无关,说明这n个n维向量的秩为n(n个极大线性无关组)既然满秩,那就意味着对应行列式为0!