行列式为0时是否可以证明其线性相关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:13:57
是可逆吗?不对吧.A=【000;100;010】就不可逆
是的,否则不能取行列式.n个n维向量线性相关的充分必要条件是它们构成的行列式等于0.
根据抽屉原则,至少一行元素全为0行列式定义是所有不同行不同列的元素求积后累加而如果一行全为0,则上面每项都为0,所以行列式为0这是一个性质,但是这个性质只比定义多一步,你只要不直接用性质即可
定理:n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量k重特征值有k个线性无关的特征向量而对k重特征值λ,属于特征值λ的特征向量是齐次线性方程组(A-λE)x=0的非零解所以属于特征值λ的线性
记原行列式为D,转置后行列式的值不变.所以D=0-a12-a13-a14-a15;a120-a23-a24-a25;a13a230-a34-a35;a14a24a340-a45;a15-25a35a4
这个是不对的..你说的A的行列式为0,就默认了A是nxn的方阵了.可是A可以是mxn的一般矩阵啊.比如A是3x5的矩阵.且A的秩r(A)=3,那么A的五个列向量的秩为3,列向量必然是线性相关的.但是三
这个问题要换个思路记A=(a1,a2,...,an)则Ax=b有唯一解b可由a1,a2,...,an唯一线性表示由此可得a1,a2,...,an线性无关进而行列式|a1,a2,...,an|=|A|≠
证明:由已知,AA'=E所以|E-A|=|AA'-A|=|A(A'-E)|=|A||A'-E|=1*|(A-E)'|=|A-E|=|-(E-A)|=(-1)^n|E-A|=-|E-A|.故|E-A|=
若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵
用反证法.假设|A*|≠0,则A*可逆.由AA*=|A|E=0等式两边右乘A*的逆矩阵得A=0.所以A*=0所以|A*|=0.这与假设矛盾.故当|A|=0时,|A*|=0.
若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵
没这结论A=111111111A为非零矩阵对角线元素不全为0,其行列式等于零再问:那请问这个方法二是什么意思?再问:再答:这说的很清楚了对角线上的元素都等于A的行列式
对,行列式为0的必要条件是行列式中向量线性相关,所以,在不满秩=奇异=不可逆再问:也就是可逆矩阵=非奇异矩阵=满秩矩阵==也就是线性无关矩阵,对吧谢谢再答:没错
看这个证明里的(2)再问:能把照片发到邮箱里吗?我是手机党,看不清楚,下载了几次都没成功!谢谢。再答:已发
太简单了如果第m行(列)为{am1,am2,...,amn}第n行(列)为{kam1,kam2,...,kamn}那么根据行列式的性质,第m行(列)乘以k再乘以-1加到第n行(列),则第n行就变为{0
不等于0,说明齐次线性方程组只有零解,说明只有全为零的数才能使得他们的线性组合等于0,因此线性无关
要求行列式必须是n个n维的向量.如果是这样就是充要条件了
结论仅对实矩阵成立,此时两个特征值不相等再问:那你到时证明一下实矩阵的呀?再答:不相等怎么证明再问:这是我们的作业题不会有错吧?再答:喂不管怎么样你采纳一下啊