行列式的迹等于主对角元之和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:26:43
行列式的迹等于主对角元之和
线性代数 行列式我们知道上(下)三角形矩阵和对角矩阵的行列式等于对角元的乘积,也知道副对角行列式等于(-1)^[n(n-

是的这是斜下三角行列式再问:老师,那是不是可以这么认为:斜上三角行列式,斜下三角行列式和副对角行列式都等于(-1)^[n(n-1)/2]a1a2…an呗?再答:对的

若行列式D各行元素之和等于0,则该行列式等于0,为什么?

这个太easy了,将没行元素都加到第一列,显然第一行等于零,因为行列式D各行元素之和等于0.有一行全是零,显然行列式等于零

请问若行列式D各行元素之和等于0,则该行列式等于多少?

等于0.将第2,3,.,n列均加到第1列,则第一列元素全部变为0,故行列式为0.

各列元素之和为0的n阶行列式之值等于0为什么

行列式有以下两个性质:1)在行列式中,一行(列)元素全为0,则此行列式的值为0.2)将一行(列)的k倍加进另一行(列)里,行列式的值不变.这里,将第二列加到第一列,将第三列加到第一列,……,将第N列加

主对角线以下的元素都为0的行列式叫上三角形行列式,它的值与对角行列是一样

|a11a12a13...a1n||0a22a23...a2n||00a33...a3n|.|000...ann|主对角线指的是a11a22a33...ann组成的斜线,那么其以下的元素指的是斜下方部

求这道行列式题的解法主对角线上全是a次对角线上全是b其它全市0还有这是个2n阶行列式

最后一行放到第二行,最后一列放到第二列变成一个对角分块矩阵的行列式.然后边两个行列式的乘积,利用归纳猜想得(a^2-b^2)^n

6. 对于“命题甲:将 级行列式 的主对角线上元素反号,则行列式变为 ;命题乙:对换行列式中两行的位置,

题目不完整.命题乙是对的,是行列式的一个性质命题甲估计不对,因为没有关于"行列式的主对角线上元素反号"的相关结论.所以甲不成立,乙成立.

求行列式的证明若行列式某一行元素都是两个元素之和,则D等于两个行列式之和.求证明

这个需要从定义出发证明,但行列式的定义方式不同,一般这样定义:D=∑(-1)^t(j1j2...jn)a1j1a2j2...aiji...anjn若行列式某一行元素都是两个元素之和,比如:aij=bj

[考研 线性代数]"特征值的和等于矩阵主对角线上元素之和"怎么证明?

写出行列式|λE-A|根据定义,行列式是不同行不同列的项的乘积之和要得到λ^(n-1)只能取对角线上元素的乘积(λ-a11)(λ-a22)...(λ-ann)所以特征多项式的n-1次项系数是-(a11

矩阵对角线上的和等于特征值之和

对.矩阵对角线上的值之和称为矩阵的“迹”,记作tr(A)可以证明,任何两个相似的矩阵,其"迹"相等.相似矩阵的特征值是一样的,所以A的特征值可以等于某个上三角矩阵的特征值.上三角矩阵的迹就是其特征值之

矩阵A的迹既然说迹是所有对角元的和也是所有特征值的和,那么是不是可以说所有对角元的和等于特征值的和?所有对角元的和是不是

对角线有主副之分,迹的和只是主对角线之和再问:亲,求法呢?再答:亲啊,主对角线元素相加啊再问:....其实我记得有别的求法...

1、n阶矩阵的n个特征值相加为什么等于主对角线上的元素之和2、n个特征值相乘为什么等于矩阵所对应的行列式

这是个定理,教材中应该有证明A的特征多项式f(λ)=|A-λE|一方面从行列式的定义分析它的λ^n,λ^(n-1)的系数及常数项另一方面f(λ)=(λ1-λ)...(λn-λ)比较λ^n,λ^(n-1

三阶矩阵A等于(aij),满足A加上2E的行列式等于0,主对角线上的元素之和为2,每一行的和为1,则A的全体特征值().

利用特征值的定义和性质可以如图求出特征值是-2,1,3.经济数学团队帮你解答,请及时采纳.

分块对角矩阵行列式等于分块行列式相乘,怎么证明?

将每个子方阵通过行(列)变换,化为上(下)三角矩阵,则大矩阵化为上(下)三角矩阵,则大矩阵的行列式等于主对角线上元素的乘积;且每个子矩阵的行列式等于它们的上(下)三角矩阵主对角线上元素的乘积.即分块对

为什么若行列式的某一行的元素都是两数之和则等于两个行列式之和.

这个是行列式的基本性质,利用行列式的定义按找这一行展开就可以证明.你说的也是对的,只不过一般来讲拆成两个行列式并不是化简,而是化繁.只有具有特殊结构的情况才用这一性质来进行分拆,否则一般用于合并两个行

一个三角矩阵的行列式是不是等于其对角线上的主元相乘?

是的.不可逆的矩阵是特征值中最少有一个0,这个矩阵有5个特征值.其中有一个为0,没有问题.

和的行列式等于行列式的和?

不对哦,例如,A=|10|B=|-10||01||0-1|再问:虽然不知道你在说什么,给你了再答:谢谢,也就是说,A行列式的第一行为(1,0),第二行为(0,1),B行列式的第一行为(-1,0),第二

n阶行列式中,若除主对角线外的其他元素都为0,这个行列式的值是不是就是主对角线上元素之积?

是的,这种行列式称为“对角行列式”,是“三角形行列式”中的一种特殊情形.