行列式等于0 为什么非齐次方程组有唯一解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:55:27
这个太easy了,将没行元素都加到第一列,显然第一行等于零,因为行列式D各行元素之和等于0.有一行全是零,显然行列式等于零
第一个行列式中,把第一行的-2倍加到第二行,第二行就变成000,行列式的值就等于0.第二个行列式中,把第一行的-5,-3倍分别加到第二、三行,得|123||0-7-8||0-1-1|,再按第一列展开得
行列式有以下两个性质:1)在行列式中,一行(列)元素全为0,则此行列式的值为0.2)将一行(列)的k倍加进另一行(列)里,行列式的值不变.这里,将第二列加到第一列,将第三列加到第一列,……,将第N列加
无解或则多解
1、任何方阵都可以通过初等行变换转化为上三角阵.2、上三角阵的行列式为0当且仅当主对角线上的元素中有0.3、n阶上三角阵的秩=n-主对角线上0的个数.4、初等行变换=左乘(可逆)初等矩阵.于是初等行变
那A的阶至少是3哈再问:可以解释再清楚一点吗?再答:因为n阶方阵A的秩小于n的充分必要条件是|A|=0.所以若|A|=0,则r(A)=2
证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解
首先,你必须区分这几个概念:线性方程组、齐次方程组和非齐次方程组.线性方程组是一个总称,凡是可写成以下形式的方程组都统称为线性方程组a11*X1+a12*X2+……+a1n*Xn=b1,a21*X1+
行列式有=0不就是方程组的解么……?
向量组a1,...,as相关齐次线性方程组x1a1+...+xsas=0有非零解.当向量个数等维数时齐次线性方程组x1a1+...+xsas=0有非零解系数行列式|a1,...,as|=0(否则,由C
方程组有无穷多解或无解.
因为半正定矩阵的特征值>=0半正定矩阵是对称矩阵所以可以对角化(定理)A=P*B*P^-1|A|=|B|>=0即证
是行列式不等于零此行列式等于2
只有满秩的行列式不为0,其他都是0
一定.因为Xn=dn/d当系数行列式d=0是,该式无意义,所以无解.再问:Dn代表什么呀?再答:代表在D中用常数项代替Xn的系数所得的行列式
行列式|A|=0时齐次线性方程组AX=0有非零解非齐次线性方程组AX=b才是有无数个解或无解
这是针对齐次方程而言的,也就是针对Ax=0而言的.两边同取行列式,|A||x|=0如果|A|≠0,则x有无数解,如果|A|=0,则x只有零解,这也是一个结论.但对于非齐次方程,即Ax=b,b≠0,则方
齐次线性方程组:系数行列式D≠0,则线性方程组无解.系数行列式D=0,则线性方程组有唯一零解.非齐次线性方程组:系数行列式D≠0,则线性方程组有唯一解.系数行列式D=0,则线性方程组有无穷组解.另外,
cramer法则
方程组系数行列式等于0的值是-1和-3,你求错了